Title of the article

AXIS-SYMMETRIC PROBLEM OF ELASTICITY THEORY FOR RADIAL-NONHOMOGENEOUS TRANSVERSAL0ISOTROPIC SPHERE OF SMALL THICKNESS WITH MIXED BOUNDARY CONDITIONS ON THE SIDE SURFACE

Authors

Mamedova T.B., Senior Lecturer of the Department “Mathematics and Computer Science”, Baku Slavic University, Azerbaijan Republic

In the section

MECHANICS OF DEFORMED SOLIDS

Year 2013 Issue 2 Pages 41-45
Type of article RAR Index UDK 539.3 Index BBK  
Abstract

The 3-dimensional strained-deformed state of radial-nonhomogeneous transversal-isotropic spheric shell is investigated by the method of asymptotic integration of elasticity theory equations. There built nonhomogeneous and homogeneous solutions. There are obtained asymptotic decompositions of homogeneous solutions and there is done the analysis of strained-deformed states, the corresponding homogeneous solutions.

Keywords nonhomogeneous solutions, homogeneous solutions, boundary layer, boundary effect
  You can access full text version of the article
Bibliography
  • Lur'e A.I. Teorija uprugosti [Elasticity theory]. Moscow, Nauka, 1970. 939 p.
  • Lehnickij S.G. Teorija uprugosti anizotropnogo tela [The theory of elasticity of an anisotropic body]. Moscow, Nauka, 1977. 415 p.
  • Bejtmen G., Jerdeji A. Vysshie trascendentnye funkcii [Higher transcendental functions]. Moscow, Nauka, 1965, vol. 1. 394 p.
  • Gol'denvejzer A.L. Postroenie priblizhennoj teorii obolochek pri pomoshhi asimptoticheskogo integrirovanija uravnenij teorii uprugosti [An approximate shells theory formulation by means of asymptotic integration of equations of elasticity theory]. Prikladnaja matematika i mehanika [Applied mathematics and mechanics], 1963, vol. 27, no. 4, pp. 593-608.
  • Ahmedov N.K., Akperova S.B. Asimptoticheskij analiz trehmernoj zadachi teorii uprugosti dlja radial'no-neodnorodnogo transversal'no-izotropnogo pologo cilindra [The asymptotic analysis of three-dimensional problem of elasticity theory for radially inhomogeneous transversely isotropic hollow cylinder]. Izv. RAN [RAS news], 2011, no. 4, pp. 170-180.
  • Ustinov Ju.A. Matematicheskaja teorija poperechno-neodnorodnyh plit [Mathematical theory of cross-inhomogeneous plates]. Rostov-na-Donu, OOOCVVR Publ., 2006. 257 p.
  • Ahmedov N.K., Mehtiev M.F. Analiz trehmernoj zadachi teorii uprugosti dlja neodnorodnogo usechennogo pologo konusa [Analysis of three-dimensional problem of elasticity theory for an inhomogeneous truncated hollow cone]. Prikladnaja matematika i mehanika [Applied mathematics and mechanics], 1993, vol. 57, no. 5, pp. 113-119.
  • Ahmedov N.K., Mehtiev M.F. Osesimmetrichnaja zadacha teorii uprugosti dlja neodnorodnoj plity peremennoj tolshhiny [Axisymmetric task of elasticity theory for inhomogeneous plates of variable thickness]. Prikladnaja matematika i mehanika [Applied mathematics and mechanics], 1995, vol. 59, no. 3, pp. 518-523.
  • Ustinov Ju.A., Judovich V.I. O polnote sistemy jelementarnyh reshenij bigarmonicheskogo uravnenija v polupolose [Completeness of elementary solutions system of biharmonic equation in half-strip]. Prikladnaja matematika i mehanika [Applied mathematics and mechanics], 1973, vol. 37, no. 4, pp. 706-714.