Title of the article

BUCKLING OF A TRANSVERSAL-ISOTROPIC SPHERICAL SEGMENT UNDER THE FLAT BASE LOAD

Authors

Ermakov A.M., Candidate of Physical and Mathematical Sciences, Doctoral Candidate of the Department of Theoretical and Applied Mechanics, Saint-Petersburg State University, Russia

In the section  
Year 2013 Issue 4 Pages 32-34
Type of article RAR Index UDK 539.3 Index BBK  
Abstract

In this paper the problem of the buckling of the transversal-isotropic segment of spherical shell with the different thicknesses under the influence of the load with a flat base is studied. The solution of this problem is based on the theory of the shell of moderate thickness by Paly-Spiro. This theory takes into account the influence of the cross section shear and change of the shell thickness. For modelling such large deformations the method of consequent loading is used. The comparison of the results which were obtained with the use of the method of linearization of non-linear equilibrium equations and the method of minimization of elastic potential of the shell has been done. The problems of stress-strain state of soft and close to soft shells that are under the influence of a load with a flat base are important for analyzing the data related to measuring a very important in ophthalmology characteristic of intraocular pressure.

Keywords nonlinear shell theory, stability, load with a flat base
  You can access full text version of the article
Bibliography
  • Palij O.M., Spiro V.E. Anizotropnye obolochki v sudostroenii. Teorija i raschet [Anisotropic membranes in shipbuilding. Theory and evaluation]. L., Korablestroenie, 1977. 386 p.
  • Feodosev V.I. Ob odnom sposobe reshenija nelinejnyh zadach ustojchivosti deformiruemyh tel [On a method for solving nonlinear problems of stability of deformable bodies]. Prikladnaja matematika i mehanika [Applied mathematics and mechanics], 1963, vol. HHVII, pp. 265-274.
  • Lavendel Je.Je. Raschet rezino-tehnicheskih izdelij [Calculation of mechanical rubber goods]. Moscow, Mashinostroenie, 1997, pp. 146-154.
  • Karpov V.V., Baranova D.A., Berkaliev T.R. Programmnyj kompleks issledovanija ustojchivosti obolochki [Program complex of investigation of the stability envelope]. SPb, Izd-vo SPbGASU, 2009, pp. 16-20.
  • Moskalenko L.P. Metodika issledovanija ustojchivosti pologih rebristyh obolochek na osnove metoda prodolzhenija reshenija po nailuchshemu parametru [Methods of studying the stability of shallow ribbed shells on the basis of continuation of the solution on the best option]. Vestn. grazhdanskih inzhenerov [Journal of civil engineers], 2011, no. 4(29), pp. 161-164.
  • Baujer S.M., Zimin B.A., Tovstik P.E. Prostejshie modeli teorii obolochek i plastin v oftal'mologii [The simplest model of the theory of shells and plates in ophthalmology]. SPb., Izd-vo S.-Peterb. un-ta, 2000. 92 p.
  • Avetisov S.Je., Bubnova I.A., Antonov A.A. Vlijanija biomehanicheskih svojstv rogovicy na pokazateli tonometrii [Effect of the biomechanical properties of the cornea on the performance of tonometry]. Bjul. SO RAMN, 2009, no. 4, pp. 30-33.
  • Kator B.Ja. Kontaktnye zadachi nelinejnoj teorii obolochek vrashhenija [Contact problems of the nonlinear theory of shells of revolution]. K., Nauk. dumka, 1990. 136 p.