Smart Search 

Title of the article


Authors Ghulghazaryan L.G., Candidate of Physical and Mathematical Sciences, Senior Researcher, Officer of the Institute of Mechanics of the NAS of Armenia, Associate Professor of the Department of Mathematical Analysis and Theory of Functions, Armenian State Pedagogical University after Khachatur Abovian, Yerevan, Armenia
In the section  
Year 2013 Issue 4 Pages 20-26
Type of article RAR Index UDK 539.3 Index BBK  

Basing on the equations of three-dimensional problem of elasticity theory, asymptotic solutions of non-classical boundary value problems of natural vibrations of orthotropic shells in the presence of viscous internal resistance are obtained, when the top front surface of the shell is given with two choices of spatial boundary conditions, and a displacement vector is given at the bottom surface. The characteristic equations for the determination of natural frequencies are derived. Functions of boundary layer type and characteristic equations for detecting the speed of boundary layer vibrations damping from the edge surface into the shell are obtained.

Keywords asymptotic method, natural frequencies, viscous resistance, boundary layer
  You can access full text version of the article
  • Panovko Ja.G. Vnutrennee trenie pri kolebanijah uprugih sistem [Internal friction in the oscillations of elastic systems]. Moscow, Fizmatgiz, 1960. 196 p.
  • Goldenvejzer A.L. Teorija uprugih tonkih obolochek [Theory of thin elastic shells]. Moscow, Nauka, 1976. 512 p.
  • Agalovjan L.A. Asimptoticheskaja teorija anizotropnyh plastin i obolochek [Asymptotic theory of anisotropic plates and shells]. Moscow, Nauka, 1997. 414 p.
  • Agalovjan L.A., Gulgazarjan L.G. Asimptoticheskie reshenija neklassicheskih kraevyh zadach o sobstvennyh kolebanijah ortotropnyh obolochek [Asymptotic solutions of nonclassical boundary value problems of natural vibrations of orthotropic shells]. PMM [PMM], 2006, vol. 70, no. 1, pp. 111-125.
  • Agalovjan L.A., Azatjan G.L. Sobstvennye kolebanija ortotropnyh plastin pri nalichii vjazkogo soprotivlenija [Natural oscillations of orthotropic plates in the presence of viscous drag]. Izv. NAN Armenii. Mehanika [News of the NAS of Armenia. Mechanics], 2005, 58, no. 2, pp. 48-58.
  • Agalovjan L.A., Gulgazarjan L.G. K opredeleniju reshenij odnogo klassa dinamicheskih prostranstvennyh zadach matematicheskoj teorii uprugosti dlja ortotropnyh obolochek [Determination of solutions of a class of dynamic spatial problems of mathematical theory of elasticity for orthotropic shells]. Uch. zapiski AGPU im. H. Abovjana [Scientific notes ASPU n.a. Abovyan], 2012, no. 2(17), pp. 29-42.
  • Gulgazarjan L.G. Sobstvennye prostranstvennye kolebanija ortotropnyh obolochek v zone pogranichnogo sloja pri uslovijah pervoj kraevoj zadachi [Own spatial variations of orthotropic shells at the level of boundary layer upon conditions of the dirichlet boundary value problem]. Aktual'nye problemy mehaniki sploshnoj sredy [Actual problems of continuum mechanics]. Erevan, Izd.-vo EGUAS, 2012, vol. 1, pp. 201-205.
  • Agalovjan L.A., Gulgazarjan L.G. Neklassicheskie kraevye zadachi o vynuzhdennyh kolebanijah ortotropnyh obolochek [Non-classical boundary value problems of forced vibrations of orthotropic shells]. Prikladnaja mehanika [Applied mechanics], 2009, vol. 45, no. 8, pp. 105-122.
  • Najfe A.H. Metody vozmushhenij [Perturbation methods]. Moscow, Mir, 1976. 455 p.
  • Lomov S.A. Vvedenie v obshhuju teoriju singuljarnyh vozmushhenij [Introduction to the general theory of singular perturbations]. Moscow, Nauka, 1981. 398 p.