Title of the article DEVELOPMENT OF A DYNAMIC MODEL FOR CALCULATING THE KINEMATIC ERROR AND EVALUATING ITS EFFECT ON THE EFFICIENCY OF PLANETARY MECHANISMS WITH ROLLING BODIES
Authors

KAPITONOV Alexander V., Ph. D. in Eng., Assoc. Prof., Associate Professor of the Department “Mechanical Engineering Technology”, Belarusian-Russian University, Mogilev, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section DYNAMICS, DURABILITY OF VEHICLES AND STRUCTURES
Year 2023
Issue 4(65)
Pages 16–24
Type of article RAR
Index UDK 621.83.06
DOI https://doi.org/10.46864/1995-0470-2023-4-65-16-24
Abstract When studying the characteristics of the mechanisms of small-sized drives, an important task is to develop ways to increase the efficiency of the mechanism. The article discusses theoretical issues related to the influence assessment of kinematic error on the efficiency of gears with rolling bodies. As a result of the research, a generalized dynamic model of planetary ball and roller mechanisms is obtained, taking into account kinematic errors, linking manufacturing errors or elastic deformations and kinematic transmission error. Mathematical dependences of the dynamic model of mechanisms with rolling bodies are derived. The model was tested on the example of calculating the kinematic error of a single-stage planetary ball transmission. Polynomial equations with constant coefficients are obtained for determining kinematic errors from the influence of manufacturing errors of transmission links. It is established that for different kinematic schemes, gear ratios and angular velocities of planetary mechanisms with rolling bodies, the transmission efficiency can vary significantly depending on its kinematic error. For gear ratios from 1.5 to 5, drive shaft rotation speeds from 1,500 to 3,000 rpm, depending on the highest values of the kinematic error from 0.00175 to 0.0349 radians, the transmission efficiency within the driven shaft rotation can decrease from 0.93 to 11 %. At the same time, transmissions constructed according to the sixth kinematic scheme have the highest efficiency values. The average efficiency value per revolution of the driven shaft from the influence of kinematic errors can decrease up to 5 %. Graphs of the dependences of transmission efficiency on their kinematic errors are given.
Keywords dynamic model, mechanisms with rolling bodies, efficiency, kinematic error
  You can access full text version of the article.
Bibliography
  1. Pashkevich M.F., Pashkevich V.M., Pashkevich A.M., Chertkov S.V. Planetarnye kulachkovo-plunzhernye peredachi. Proektirovanie, kontrol i diagnostika [Planetary cam-plunger gears. Design, control and diagnostics]. Mogilev, Belorussko-Rossiyskiy universitet Publ., 2003. 221 p. (in Russ.).
  2. Lustenkov M.E. Peredachi s promezhutochnymi telami kacheniya: opredelenie i minimizatsiya poter moshchnosti [Transmissions with intermediate rolling elements: determination and minimization of power losses]. Mogilev, Belorussko-Rossiyskiy universitet Publ., 2010. 274 p. (in Russ.).
  3. Taits B.A. Tochnost i kontrol zubchatykh koles [Precision and control of gears]. Moscow, Mashinostroenie Publ., 1972. 368 p. (in Russ.).
  4. Pashkevich V.M., et al. Povyshenie tochnosti mekhanicheskikh peredach na osnove kompyuternogo modelirovaniya i ispolzovaniya tekhnologii iskusstvennogo intellekta [Improving the accuracy of mechanical transmissions based on computer modeling and the use of artificial intelligence technologies]. Mogilev, Belorussko-Rossiyskiy universitet Publ., 2011. 139 p. (in Russ.).
  5. Pleguezuelos M., Pedrero J.I., Sánchez M.B. Analytical expressions of the efficiency of standard and high contact ratio involute spur gears. Mathematical problems in engineering, 2013, vol. 2013. DOI: https://doi.org/10.1155/2013/142849.
  6. Dobreva A., Dobrev V., Mollova G. Research of gear drives. IOP conference series: Materials science and engineering. The XXXI-st SIAR International congress of automotive and transport engineering “Automotive and integrated transport systems” (AITS 2021). Chisinau, 2021, vol. 1220. DOI: https://doi.org/10.1088/1757- 899X/1220/1/012025.
  7. Jiang N., Wang S., Yang A., Zhou W., Zhang J. Transmission efficiency of cycloid–pinion system considering the assembly dimensional chain. Applied sciences, 2022, vol. 12, iss. 23. DOI: https://doi.org/10.3390/app122311917.
  8. Cheremnov A.V., I-Kan A., Ivkina O.P. Sintez prostranstvennoy peredachi s promezhutochnymi telami kacheniya s uluchshennymi kachestvennymi kharakteristikami [Synthesis of spatial transmission with intermediate rolling elements with improved quality characteristics]. Bulletin of the Tomsk Polytechnic University, 2012, vol. 321, no. 2, pp. 26–30 (in Russ.).
  9. Pabiszczak S., Ptaszyński W. Effect of manufacturing errors on the operation of the eccentric rolling transmission. Advances in science and technology research journal, 2020, vol. 14, iss. 3, pp. 213–222. DOI: https://doi.org/10.12913/22998624/122604.
  10. Lustenkova E.S. Experimental estimation of efficiency and kinematic accuracy of a spherical roller transmission. IOP conference series: Materials science and engineering. International conference on mechanical engineering and modern technologies (MEMT 2020). Tomsk, 2020, vol. 1118. DOI: https://doi.org/10.1088/1757-899X/1118/1/012007.
  11. Gromyko P.N., Khatetovsky S.N., Yurkova V.L. Ispolzovanie udlinennoy epitsikloidy dlya formoobrazovaniya zubchatykh poverkhnostey peredach ekstsentrikovogo tipa [Use of an elongated epicycloide for forming gear surfaces of excentric gears]. Vestnik Belorussko-Rossiyskogo universiteta, 2019, no. 1(62), pp. 14–21 (in Russ.).
  12. Frolov K.V., et al. Teoriya mekhanizmov i mekhanika mashin [Theory of mechanisms and mechanics of machines]. Moscow, Vysshaya shkola Publ., 1998. 500 p. (in Russ.).
  13. Kapitonov A.V., Saskovets K.V., Kasyanov А.I., Leshko D.V., Filchenko P.A. Avtomatizirovannoe proektirovanie konstruktsiy malogabaritnykh radialno-plunzhernykh reduktorov s ispolzovaniem sovremennykh SAPR [Computer-aided design of small-size radial plunger reducers using advanced CAD]. Vestnik Belorussko-Rossiyskogo universiteta, 2015, no. 3(48), pp. 25–32 (in Russ.).
  14. Kapitonov А.V., Saskovets K.V., Kasyanov А.I. Planetarnaya radialno-plunzhernaya peredacha s uluchshennymi ekspluatatsionnymi kharakteristikami [Radial plunger planetary gearing with improved operating characteristics]. Vestnik Belorussko-Rossiyskogo universiteta, 2017, no. 3(56), pp. 27–34 (in Russ.).
  15. Pashkevich M.F., Gerashchenko V.V. Planetarnte sharikovye i rolikovye reduktory i ikh ispytaniya [Planetary ball and roller gearboxes and their tests]. Minsk, BelNIINTI Publ., 1992. 248 p. (in Russ.).
  16. Kapitonov A.V., Pashkevich V.M. Kinematicheskie i massogabaritnye kharakteristiki resursoeffektivnykh mekhanicheskikh peredach. Kompyuternoe modelirovanie, eksperimentalnaya otsenka [Kinematic and mass-dimensional characteristics of lifetime-efficient mechanical transmissions. Computer modeling, experimental evaluation]. Mogilev, Belorussko-Rossiyskiy universitet Publ., 2017. 248 p. (in Russ.).
  17. Kapitonov A.V., Chernyakov S.G. Issledovanie kinematicheskoy tochnosti planetarnykh rolikovykh peredach metodami garmonicheskogo analiza i kontrolya v sbore [Investigation of the kinematic accuracy of planetary roller gears by methods of harmonic analysis and assembly control]. Vestnik Belorussko-Rossiyskogo universiteta, 2011, no. 4(33), pp. 40–50 (in Russ.).
  18. Kapitonov A.V. Matematicheskoe modelirovanie kinematicheskikh pogreshnostey planetarnykh rolikovykh peredach [Mathematical modeling kinematical inaccuracy planetary roller transfers]. Vestnik Belorussko-Rossiyskogo universiteta, 2003, no. 2(5), pp. 44–48 (in Russ.).

Title of the article OVERVIEW AND CLASSIFICATION OF COPYING SYSTEMS OF FIELD SURFACE IN DESIGNS OF HARVESTING AGRICULTURAL MACHINES
Authors

JASAU Dzmitry V., Leading Design Engineer – Head of the Sector of Design and Research Department of Dynamics, Durability, Analytical Reliability, Scientific and Technical Centre of Combine Harvesters Manufacturing OJSC “Gomselmash”, Gomel, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section GENERAL ISSUES OF MECHANICS
Year 2023
Issue 4(65)
Pages 5–15
Type of article RAR
Index UDK 631.35, 681.52
DOI https://doi.org/10.46864/1995-0470-2023-4-65-5-15
Abstract The article presents the description, principle of operation and formulates basic function of copying systems of field surface of harvesting agricultural machines. The review of existing counterbalancing mechanisms and copying systems of field surface used in the designs of harvesting agricultural machines is made, their advantages and disadvantages are highlighted. According to the results of the review of designs of various copying systems, the classification of these systems is proposed, and the structural relationship is described, which makes it possible to characterize various designs of copying systems in a general way.
Keywords counterbalancing mechanism, copying system, pneumohydraulic accumulator, spring, lever mechanism, agricultural machine
  You can access full text version of the article.
Bibliography
  1. Dolgov I.A. Uborochnye selskokhozyaystvennye mashiny (konstruktsiya, teoriya, raschet) [Harvesting agricultural machines (construction, theory, calculation)]. Rostov-on-Don, ITs DGTU Publ., 2003. 707 p. (in Russ.).
  2. Ustinov A.N. Zernouborochnye mashiny [Grain harvesters]. Moscow, Akademiya Publ., 2003. 128 p. (in Russ.).
  3. Laryushin N.P. Selskokhozyaystvennye mashiny (razdel “Zernouborochnye kombayny”) [Agricultural machines (section “Combine harvesters”)]. Penza, RIO PGSKhA Publ., 2011. 243 p. (in Russ.).
  4. Ozherelev V.N. Sovremennye zernouborochnye kombayny [Modern combine harvesters]. Moscow, Kolos Publ., 2009. 175 p. (in Russ.).
  5. Kotov A.V., Chuprynin Yu.V. Primenenie vektornogo analiza pri proektirovanii rychazhnykh mekhanizmov [Application of vector analysis in the design of lever mechanisms]. Materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii “Nauchno-tekhnicheskiy progress v selskokhozyaystvennom proizvodstve” [Proc. International scientific and practical conference “Scientific and technological progress in agricultural production”]. Minsk, 2007, vol. 2, pp. 32–37 (in Russ.).
  6. Jasov D.V., Konyavskiy A.D., Shantyko A.S., Chuprynin Yu.V. Matematicheskaya model mekhanizma uravnoveshivaniya i podema kosilki-plyushchilki rotatsionnoy [Mathematical model of themechanism
    for balancing and lifting the rotary windrower]. Aktualnye voprosy mashinovedeniya, 2020, iss. 9, pp. 27–30 (in Russ.).
  7. Jasov D.V. Optimizatsiya parametrov mekhanizmov podema i uravnoveshivaniya adaptera kosilki samokhodnoy [Optimization of parameters of lifting and balancing mechanisms of the adapter of the self-propelled mower]. Tezisy dokladov 3-y Mezhdunarodnoy nauchno-prakticheskoy konferentsii “Innovatsionnye tekhnologii v agropromyshlennom komplekse — segodnya i zavtra” [Abstracts of papers of the 3rd International scientific and practical conference “Innovative technologies in the agro-industrial complex — today and tomorrow”]. Gomel, 2019, pp. 83–84 (in Russ.).
  8. Rekhlitski O.V., Chuprynin Yu.V. Matematicheskoe opisanie sistemy uravnoveshivaniya adapterov mobilnoy kormouborochnoy mashiny s primeneniem pnevmogidroakkumulyatora [A mathematical formulation of mobile forage harvester adapters balance system with hydropneumatic accumulator application]. Mechanics of machines, mechanisms and materials, 2014, no. 1(26), pp. 40–48 (in Russ.).
  9. Khropakov D.I., Jasov D.V., Podrez V.V. Matematicheskoe modelirovanie gidromekhanicheskoy sistemy kopirovaniya kormouborochnogo kombayna [Mathematical modeling of the hydromechanical copying system of a forage harvester]. Tezisy dokladov 3-y Mezhdunarodnoy nauchno-prakticheskoy konferentsii “Innovatsionnye tekhnologii v agropromyshlennom komplekse — segodnya i zavtra” [Abstracts of papers 3rd International scientific and practical conference “Innovative technologies in the agro-industrial complex — today and tomorrow”]. Gomel, 2019, pp. 81–82 (in Russ.).
  10. Strok E.Ya., Belchik L.D., Ananchikov A.A., Aleksandrova T.L. Postroenie aktivnoy sistemy kontaktnogo kopirovaniya relefa polya [Building active contact system of field relief copying]. Aktualnye voprosy mashinovedeniya, 2018, iss. 7, pp. 115–120 (in Russ.).
  11. Strok Ye.Ya., Belchik L.D., Vaschula A.V., Zakharov A.V. Beskontaktnoe kopirovanie relefa poverkhnosti polya rabochimi organami selkhozmashin s ispolzovaniem akusticheskikh metodov [Non-contact copying of the field surface topography by agricultural machinery tools with the use of acoustic methods]. Tractors and agricultural machinery, 2012, vol. 79, no. 6, pp. 35–40. DOI: https://doi.org/10.17816/0321-4443-69391 (in Russ.).
  12. Savchuk S.V. Povyshenie kachestva funktsionirovaniya elektrogidravlicheskogo privoda rabochikh organov mobilnykh mashin pri beskontaktnom kopirovanii relefa poverkhnosti. Avtoref. diss. kand. tekhn. nauk [Improving the quality of functioning of the electrohydraulic drive of the working bodies of mobile machines with contactless copying of the surface relief. Extended Abstract of Ph. D. Thesis]. Minsk, 2019. 23 p. (in Russ.).
  13. Byshov N.V., Gorokhova M.N., Byshov D.N., Zagorodniy O.S., Gorokhov A.A. Kopirovanie relefa pochvy bez mekhanicheskogo kontakta pri udalenii kartofelnoy botvy [Contactless method of copying the relief of the soil when you delete a potato haulm]. Scientific journal of KubSAU, 2013, no. 90(06). Available at: http://ej.kubagro.ru/2013/06/pdf/19.pdf (in Russ.).
  14. Kandelya M.V., Shilko P.A., Fathullin R.R. Ustroystvo dlya avtomaticheskogo kopirovaniya relefa polya zhatkoy [The device for automatic contour following the header field]. Vestnik Priamurskogo gosudarstvennogo universiteta im. Sholom-Aleykhema, 2016, no. 1(22), pp. 18–24 (in Russ.).
  15. Podrez V.V., Volkov I.V., Shish N.V. Gidravlicheskiy privod podemnogo ustroystva uborochnogo modulya selskokhozyaystvennoy mashiny [Hydraulic drive of the lifting device of the harvesting module of the agricultural machine]. Patent BY, no. 22334, 2018 (in Russ.).
  16. Shindelov A.V. Vliyanie vzaimnogo polozheniya zhatki i naklonnoy kamery na tekhnologicheskiy protsess raboty zernouborochnogo kombayna. Avtoref. diss. kand. tekhn. nauk [Influence of the relative position of the harvester and the inclined chamber on the technological process of the combine harvester. Abstract of Ph. D. Thesis]. Novosibirsk, 1999. 15 p. (in Russ.).
  17. Kandelya M.V., et al. Ustroystvo dlya avtomaticheskogo kopirovaniya relefa polya zhatkoy [Device for automatic copying of the field relief with a header]. Patent RU, no. 2529576, 2014 (in Russ.).
  18. Garbald J.P., et al. Crop harvesting machine with variable header float. Patent US, no. 20200077585A1, 2020.
  19. Dunn J.T., et al. Crop machine with an electronically controlled hydraulic cylinder flotation system. Patent US, no. 10617059B2, 2020.

GENERAL ISSUES OF MECHANICS
Jasau D.V.
Overview and classification of copying systems of field surface in designs of harvesting agricultural machines
5
DYNAMICS, DURABILITY OF VEHICLES AND STRUCTURES
Kapitonov A.V.
Development of a dynamic model for calculating the kinematic error and evaluating its effect on the efficiency of planetary mechanisms with rolling bodies
16
Gegedesh M.G., Petrachkou S.A.
Computer-based strength analysis of tank-containers under impact
25
Kudelko I.U., Sidorenko A.G., Sotnikov M.V.
Research of destruction causes of largesized bearings of mining dump trucks
31
MECHANICAL ENGINEERING COMPONENTS
Trusevich I.A., Taratorkin A.I., Taratorkin I.A.
Improving the acoustic behavior of the housing of automatic transmission of N2 category vehicle based on the method of modal representation of a dynamic system
38
Parmanchuk V.V., Shyshko S.А., Rehinia U.V.
Investigation of the cavitation process in the circulation circle of the hydromechanical transmission of the BELAZ loader
47
MECHANICAL ENGINEERING MATERIALS AND TECHNOLOGIES
Grigorchik A.N., Kukareko V.A., Belotserkovsky M.А., Sosnovskiy A.V., Astrashab E.V.
Wear resistance of antifriction gas-thermal coatings based on the Cu-Al system under boundary friction
54
Shil’ko S.V., Chernous D.A., Stolyarov A.I., Zhang Q.
Thermomechanics of disperse-filled composites and computer design of materials with record high thermal conductivity
63
MATERIALS SCIENCE IN MECHANICAL ENGINEERING
Senyut V.T., Vityaz P.A., Parnitsky A.M.
Thermodynamic analysis of the formation of a nanostructural polycrystalline material based on nanodiamonds modified with non-diamond carbon (part 2)
76
COMPUTER MECHANICS
Khotko A.V.
Prediction of load and stiffness characteristics of pneumatic tires by computer modeling methods
85
GEOMECHANICS
Polyakov A.L., Lapatsin S.N., Mozgovenko M.S., Rachkovskiy M.A.
On the influence of longwall mining on the deformation of the operational excavations
97
BIOMECHANICS
Merkuryev I.V., Chung C.T., Saypulaev G.R., Saypulaev M.R., Deeb D.
Development of a kinematics model of human fingers for application in robotic gloves
106
OUR JUBILEES
Pleskachevsky Yuriy Mikhaylovich (on the occasion of his 80th birthday)
114
Kukareko Vladimir Arkadevich (on the occasion of his 75th birthday)
117