Title of the article ON THE CHOICE OF MODERN STRUCTURAL METAL MATERIAL FOR HIGH-DUTY MECHANICAL SYSTEMS. PART 1
Authors

SOSNOVSKIY Leonid A., D. Sc. in Eng., Prof., Professor of the Department “Locomotives”, Belarusian State University of Transport, Gomel, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section TRIBO-FATIGUE SYSTEMS MECHANICS
Year 2022
Issue 3(60)
Pages 85–96
Type of article RAR
Index UDK 669.13.018; 669.131.7
DOI https://doi.org/10.46864/1995-0470-2022-3-60-85-96
Abstract It is shown that when solving the problems of assurance of quality, reliability, competitiveness of high-duty mechanical systems, metal and a complex of its mechanical and service properties are of fundamental importance. Steel cast iron MONICA (Mo–Ni–Cu) (patent BY, no. 15617) exhibits an unconventional and unique ability to lose brittleness (increase viscosity) with increasing strength. In terms of service properties, it is not inferior to alloyed heat-strengthened steels. This makes it possible to recommend it for the manufacture of various highly loaded parts and assemblies of modern technology. The article provides several examples of the effective use of MONICA for the manufacture of cast knives for cutting and chopping devices of forage harvesters (Hi-Tech), large-sized gear wheels with a diameter of 500 mm for final drives of agricultural combines (know-how), as well as experimental cast rails for railway transport (Hi-Tech). A complex of laboratory and full-scale tests has convincingly proved that one brand of a new structural material fully provides the required operational reliability of many and different tribo-fatigue systems, the performance of which is determined by many criteria (fatigue, wear, friction, crack resistance) under the action of high repetitive variables and shock-cyclic loads. This determines the unconditional efficiency and competitiveness of critical mechanical systems (tribo-fatigue systems) for modern machines and equipment.
Keywords metal; mechanical and service properties; limits of strength, fatigue, crack resistance; wear resistance; stress-strain and limit states; modification; microstructure; MONICA
  You can access full text version of the article.
Bibliography
  1. Ponomarev S.D. Raschety na prochnost v mashinostroenii. Tom 3 [Strength calculations in mechanical engineering. Volume 3]. Moscow, Mashgiz Publ., 1956–1959. 1115 p. (in Russ.).
  2. Grebenik V.M. Ustalostnaya prochnost i dolgovechnost metallurgicheskogo oborudovaniya [Fatigue strength and durability of metallurgical equipment]. Moscow, Mashinostroenie Publ., 1969. 256 p. (in Russ.).
  3. Birger I.A., et al. Konstruktsionnaya prochnost materialov i detaley gazoturbinnykh dvigateley [Structural strength of materials and parts of gas turbine engines]. Moscow, Mashinostroenie Publ., 1981. 222 p. (in Russ.).
  4. Kudryavtsev I.V., Naumchenkov N.E., Savvina N.M. Ustalost krupnykh detaley mashin [Fatigue of large parts of machines]. Moscow, Mashinostroenie Publ., 1981. 237 p. (in Russ.).
  5. Makhutov N.A. Deformatsionnye kriterii razrusheniya i raschet elementov konstruktsiy na prochnost [Deformation criteria of destruction and calculation of structural elements for strength]. Moscow, Mashinostroenie Publ., 1981. 272 p. (in Russ.).
  6. Oding I.A. Dopuskaemye napryazheniya v mashinostroenii i tsiklicheskaya prochnost metallov [Allowable stresses in mechanical engineering and cyclic strength of metals]. Moscow, Mashgiz Publ., 1962. 260 p. (in Russ.).
  7. Oleynik N.V. Vynoslivost detaley mashin [Endurance of machine parts]. Kiev, Tekhnika Publ., 1979. 199 p. (in Russ.).
  8. Pochtennyy E.K. Prognozirovanie dolgovechnosti i diagnostika ustalosti detaley mashin [Predicting durability and diagnosing fatigue of machine parts]. Minsk, Nauka i tekhnika Publ., 1982. 246 p. (in Russ.).
  9. Trubin G.K. Kontaktnaya ustalost materialov dlya zubchatykh koles [Contact fatigue of materials for gears]. Moscow, Mashgiz Publ.,1962. 404 p. (in Russ.).
  10. Frolov K.V. Metody sovershenstvovaniya mashin i sovremennye problemy mashinostroeniya [Methods of improving machines and modern problems of mechanical engineering]. Moscow, Mashinostroenie Publ., 1984. 233 p. (in Russ.).
  11. Birger I.A., Schorr B.F., Iosilevich G.B. Raschet na prochnost detaley mashin [Calculation of the strength of machine parts]. Moscow, Mashinostroenie Publ., 1979. 702 p. (in Russ.).
  12. Boytsov V.V., et al. Puti snizheniya koeffitsientov zapasa prochnosti i metalloemkosti mashin pri odnovremennom povyshenii ikh nadezhnosti i dolgovechnosti [Ways to reduce the safety factors and metal consumption of machines while increasing their reliability and durability]. Vestnik mashinostroeniya, 1981, no. 11, pp. 46–49 (in Russ.).
  13. Kuznetsov A.A., Zolotov A.A., Komyagin V.A., Titov M.I. Nadezhnost mekhanicheskikh chastey konstruktsii letatelnykh apparatov [Reliability of mechanical parts of the design of aircraft]. Moscow, Mashinostroenie Publ., 1974. 144 p. (in Russ.).
  14. Pisarenko G.S. Sovremennye problemy prochnosti [Modern problems of strength]. Sovremennye problemy teoreticheskoy i prikladnoy mekhaniki, 1978, pp. 25–52 (in Russ).
  15. Reshetov D.N. Rabotosposobnost i nadezhnost detaley mashin [Performance and reliability of machine parts]. Moscow, Vysshaya shkola Publ., 1974. 206 p. (in Russ.).
  16. Tselikov A.Ya., Reshetov D.N., Morozov B.A. Nadezhnost konstruktsiy i mekhanizmov [Reliability of structures and mechanisms]. Vestnik Akademii nauk SSSR, 1974, no. 12, pp. 37–42 (in Russ.).
  17. Tsitovich I.S., Dorozhkin N.N., Dyachenko V.A. Bezotkaznost i dolgovechnost traktorov selskokhozyaystvennykh masin [Reliability and durability of tractors and agricultural machines]. Minsk, Uradzhay Publ., 1977. 151 p. (in Russ.).
  18. Sosnovskiy L.A. Mekhanika ustalostnogo razrusheniya. Tom 2 [Fatigue failure mechanics. Volume 2]. Gomel, NPO “TRIBOFATIKA”, 1994 (in Russ.).
  19. Garkunov D.N. Tribotekhnika [Tribotechnics]. Moscow, Mashinostroenie Publ., 1985. 424 p. (in Russ.).
  20. Zhukovskiy N.E. Trenie bandazhey zheleznodorozhnykh koles o relsy. Tom 7 [Friction of bandages of railway wheels on rails. Volume 7]. Leningrad, Gostekhizdat Publ., 1950. Pp. 426–478 (in Russ.).
  21. Kragelskiy I.V., Dobychin M.V., Kombalov V.S. Osnovy raschetov na trenie i iznos [Basics of calculations for friction and wear]. Moscow, Mashinostroenie Publ., 1977. 526 p. (in Russ.).
  22. Drozdov Yu.N., Pavlov V.G., Puchkov V.N. Trenie i iznos v ekstremalnykh usloviyakh [Friction and wear in extreme conditions]. Moscow, Mashinostroenie Publ., 1986. 223 p. (in Russ.).
  23. Johnson K.L. Contact mechanics. Cambridge, Cambridge University Press, 1985.
  24. Goryacheva I.G. Mekhanika friktsionnogo vzaimodeystviya [Mechanics of friction interaction]. Moscow, Nauka Publ., 2001. 478 p. (in Russ.).
  25. Bowden F.P., Tabor D. Friction and lubrication. London, Methuen, 1956. 150 p.
  26. Konovalov L.V. Nagruzhennost, ustalost, nadezhnost detaley metallurgicheskikh mashin [Loading, fatigue, reliability of parts of metallurgical machines]. Moscow, Metallurgiya Publ., 1981. 280 p. (in Russ.)
  27. Sosnovskiy L.A. Statisticheskaya mekhanika ustalostnogo razrusheniya [Statistical mechanics of fatigue destruction]. Minsk, Nauka i tekhnika Publ., 1987. 288 p. (in Russ.).
  28. Tsitovich I.S., Berestnev O.V. Puti povysheniya nadezhnosti mashin [Ways to improve machine reliability]. Minsk, Nauka i tekhnika Publ., 1979. 81 p. (in Russ.).
  29. Birger I.A. Veroyatnost razrusheniya, zapasy prochnosti i diagnostika [Probability of destruction, safety factors and diagnostics]. Problemy mekhaniki deformirovannogo tverdogo tela, 1970, pp. 71–82 (in Russ.).
  30. Bolotin V.V. Statisticheskie metody v stroitelnoy mekhanike [Statistical methods in construction mechanics]. Moscow, Stroyizdat Publ., 1965. 280 p.
  31. Kugel R.V. Nadezhnost mashin massovogo proizvodstva [Reliability of mass production machines]. Moscow, Mashinostroenie Publ., 1981. 244 p. (in Russ.).
  32. Stepnov M.N., Giatsintov E.V. Ustalost legkikh konstruktivnykh splavov [Fatigue of light structural alloys]. Moscow, Mashinostroenie Publ., 1973. 317 p. (in Russ.).
  33. Troshchenko V.T., Sosnovskiy L.A. Soprotivlenie ustalosti metallov i splavov. Tom 2 [Resistance to fatigue of metals and alloys. Volume 2]. Kiev, Nauchnaya mysl Publ., 1987.
  34. Lebedev A.A., Kovalchuk B.I., Giginyak F.F., Lamashevskiy V.P. Mekhanicheskie svoystva konstruktsionnykh materialov pri slozhnom napryazhenii sostoyaniya [Mechanical properties of structural materials under complex stress]. Kiev, Nauchnaya mysl Publ., 1983. 366 p. (in Publ.).
  35. Pisarenko G.S., et al. Prochnost materialov i elementov konstruktsiy v ekstremalnykh usloviyakh. Tom 2 [Strength of materials and structural elements in extreme conditions. Volume 2]. Kiev, Nauchnaya mysl Publ., 1980.
  36. Fridman Ya.B. Mekhanicheskie svoystva metallov. Mekhanicheskie ispytaniya. Konstruktsionnaya prochnost. Chast 2 [Mechanical properties of metals. Mechanical tests. Structural strength. Part 2]. Moscow, Mashinostroenie Publ., 1974. 368 p. (in Russ.).
  37. Strazhev V.I., et al. Slovo o tribofatike [The word about tribo-fatigue]. Gomel, Minsk, Moscow, Kiev, Remika Publ., 1996. 132 p. (in Russ.).
  38. Sosnovskiy L.A. Mekhanika iznosoustalostnogo povrezhdeniya [Mechanics of wear and tear damage]. Tezisy dokladov Mezhdunarodnoy nauchno-prakticheskoy konferentsii “Problemy bezopasnosti na transporte” [Report abstracts of Internarnational scientific and practical conference “Transport safety problems”]. Gomel, 2000, p. 186 (in Russ.).
  39. Sherbakov S.S., Sosnovskiy L.A. Mekhanika tribofaticheskikh sistem [Mechanics of tribo-fatigue systems]. Minsk, Belorusskiy gosudarstvennyy universitet Publ., 2011. 407 p. (in Russ.).
  40. Sosnovskiy L.A. Zakon treniya: ot tribologii k tribofatike. Soobshchenie 1. Klassicheskiy zakon sukhogo treniya i neobkhodimost ego korrektirovki [Law of friction: from tribology to tribo-fatigue. Report 1. Classical law of (dry) friction and need for its adjustment]. Mechanics of machines, mechanisms and materials, 2019, no. 1(46), pp. 64–76 (in Russ.).
  41. Sosnovskiy L.A. Zakon treniya: ot tribologii k tribofatike. Soobshchenie 2. Teoreticheskie issledovaniya [Law of friction: from tribology to tribo-fatigue. Report 2. Theoretical studies]. Mechanics of machines, mechanisms and materials, 2019, no. 2(47), pp. 66–77 (in Russ.).
  42. Sosnovskiy L.A. Zakon treniya: ot tribologii k tribofatike. Soobshchenie 3. Eksperimentalnye issledovaniya [Law of friction: from tribology to tribo-fatigue. Report 3. Experimental studies]. Mechanics of machines, mechanisms and materials, 2019, no. 4(49), pp. 95–106 (in Russ.).
  43. Sosnovskiy L.A. Osnovy tribofatiki [Fundamentals of tribo-fatigue]. Gomel, Belorusskiy gosudarstvennyy universitet transporta Publ., 2003. Vol. 1, 246 p., vol. 2, 234 p. (in Russ.)
  44. Sosnovskiy L.A., Zhuravkov M.A., Sherbakov S.S. Fundamentalnye i prikladnye zadachi tribofatiki [Fundamental and applied problems of tribo-fatigue]. Minsk, Belorusskiy gosudarstvennyy universitet Publ., 2011. 488 p. (in Russ.).
  45. Lyungen Kh.B., Peters M., Shmele P. Proizvodstvo chuguna i stali [Iron and steel production]. Chernye metally, 2011, no. 9, pp. 18–25 (in Russ.).
  46. Keough J.R., Hayrynen K.L., Pioszak G.L. Designing with austempered ductile iron (ADI). AFS Proceedings 2010, 2010, 15 p.
  47. Roedter H. ADI – austemped ductile iron. Chuguny s sharovidnym i vermikulyarnym grafitom i austenitno-beynitnoy matritsey. Sovremennye materialy dlya litykh detaley, 2004, pp. 249–258.
  48. Proc. 1st International conference on austempered ductile iron “Your means to improved performance, productivity and cost”. Rosemont, 1984. 300 р.
  49. Proc. 2nd International conference on austempered ductile iron “Your means to improved performance, productivity and cost”. Ann Arbour, 1986. 463 р.
  50. Proceedings of the World conference on austempered ductile iron. Bloomingdale, 1991. 460 p.
  51. Gagne M., Hayrynen K.L. Environmental embrittlement of ductile iron. Proc. 8th International symposium on science and processing of cast iron. Beijing, 2006, pp. 452–457.
  52. Hayrynen K.L., Keough J.R., Kovacs B.V. Determination of mechanical properties in various ductile irons after subjecting them to long-term elevated temperatures. Available at: https:// citeseerx.ist.psu.edu/viewdoc/download?doi= 10.1.1.732.2661&rep=rep1&type=pdf.
  53. Proceedings of the World conference on austempered ductile iron. Louisville, 2002. 524 p.
  54. Gapanovich V.А., Sosnovskiy L.А. What must surface hardness of rail be? Trudy 6 Mezhdunarodnogo simpoziuma po tribofatike [Proc. 6th International symposium on tribo-fatigue]. Minsk, 2010, vol. 1, pp. 179– 186.
  55. Georgiev М.N. Fracture durability of railway rails. Kemerovo, ООО “Master-flag” Ltd, 2006. 212 p.
  56. Sosnovskiy L.A., Vitiaz P.A., Gapanovich V.A., Psyrkov N.V., Makhutov N.A. Chugun i stal v tribofaticheskikh sistemakh sovremennykh mashin i oborudovaniya [Iron and steel in tribo-fatigue systems for modern machinery and equipment]. Mechanics of machines, mechanisms and materials, 2014, no. 4(29), pp. 5–20 (in Russ.).
  57. Komissarov V.V., Zamyatnin V.O., Taranova E.S. Krupnogabaritnye zubchatye kolesa iz vysokoprochnogo chuguna [Largesized gears made of high-strength cast iron]. Materialy konferentsii “Zhivuchest i konstruktsionnoe materialovedenie” [Proc. conference “Survivability and structural materials science”]. Moscow, 2012, p. 26 (in Russ.).
  58. Psyrkov N.V., Komissarov V.V., Tyurin S.A., Taranova E.S. Opytnye krupnogabaritnye zubchatye kolesa dlya bortovykh reduktorov selskokhozyaystvennykh kombaynov iz spetsialnogo chuguna marki VChTG [Experimental large-sized gears for side gearboxes of agricultural combines made of special cast iron of the VChTG brand]. Aktualnye voprosy mashinovedeniya, 2013, iss. 2, pp. 391–394 (in Russ.).
  59. Komissarov V.V., Taranova E.S., Zamyatnin V.O., Psyrkov N.V., Sosnovskiy L.A. Sravnitelnaya otsenka rabotosposobnosti krupnogabaritnykh zubchatykh koles iz spetsialnogo chuguna marki VChTG i stali [Comparative assessment of the performance of large-sized gears made of special cast iron of VChTG and steel grade]. Tezisy dokladov 2 Mezdunarodnoy konferentsii SSMS-2014 “Zhivuchest i konstruktsionnoe materialovedenie” [Report abstracts of the 2nd International conference SSMS-2014 “Survivability and structural materials science”]. Moscow, 2014, p. 68 (in Russ.).
  60. Komissarov V.V., Taranova E.S., Drobyshevskiy P.S., Zamyatnin V.O., Tyurin S.A., Sosnovskiy L.A. Ob opyte izgotovleniya i ekspluatatsii zubchatykh koles iz novogo konstruktsionnogo materiala “MONIKA” [About experience of manufacture and maintenance of gears from the new structural material “MONICA”]. Vestnik IzhGTU imeni M.T. Kalashnikova, 2017, vol. 20, no. 2, pp. 107–112 (in Russ.).
  61. Sosnovskiy L.A., Matvetsov V.I., Sherbakov S.S. O litykh relsakh iz novogo konstruktsionnogo materiala [On cast rails made of new structural material]. Nauka i obrazovanie transportu, 2016, no. 2, pp. 200–204 (in Russ.).
  62. Sosnovskiy L.A., Komissarov V.V., Matvetsov V.I., Miroshnikov N.E. Novyy konstruktsionnyy material dlya zheleznodorozhnykh relsov: mekhanicheskie i sluzhebnye svoystva [New structural material for iron and road rails: mechanical and service properties]. Bulletin of BSUT: science and transport, 2014, no. 2(29), pp. 77–82 (in Russ.).
  63. Matvetsov V.I., Miroshnikov N.E., Sosnovskiy L.A. Naturnye ispytaniya tyazhelykh zheleznodorozhnykh relsov iz chuguna VChTG [Full-scale tests of heavy railway rails made of cast iron VChTG]. Tezisy dokladov 2 Mezdunarodnoy konferentsii SSMS-2014 “Zhivuchest i konstruktsionnoe materialovedenie” [Report abstracts of International conference SSMS-2014 “Survivability and structural materials science”]. Moscow, 2014, p. 41 (in Russ.).
  64. Matvetsov V.I., Miroshnikov N.E. Opyt izgotovleniya i ispytaniy relsov dlinoy 6.5 m iz spetsialnogo chuguna [Experience in the manufacture and testing of 6.5 m long rails made of special cast iron]. Aktualnye voprosy mashinovedeniya, 2013, iss. 2, pp. 405–407 (in Russ.).
  65. Sosnovskiy L.A., Matvetsov V.I., Psyrkov N.V. Ob izgotovlenii zheleznodorozhnykh relsov iz vysokoprochnogo chuguna [On the manufacture of railway rails from high-strength cast iron]. Trudy Mezhdunarodnoy nauchno-prakticheskoy konferentsii, posvyashchennoy 100-letiyu professora M.A. Frishmana “Problemy vzaimodeystviya puti i podvizhnogo sostava” [Proc. International scientific and practical conference dedicated to the 100th anniversary of Professor M.A. Frishman “Problems of interaction of track and rolling stock”]. Dnipropetrovsk, 2013, pp. 54–55 (in Russ.).
  66. State Standard 30638-99. Tribofatika: terminy i opredeleniya [Tribofatigue: terms and definitions]. Minsk, Mezhgosudarstvennyy sovet po standartizatsii, metrologii i sertifikatsii Publ., Belorusskiy sovet po standartizatsii i sertifikatsii Publ., 1999. 17 p. (in Russ.).

Title of the article FINITE ELEMENT MODELING OF THE PROBLEM OF STRETCHING A MATERIAL WITH ZONES OF ALTERED STRUCTURE
Authors

VERAMEICHYK Andrei I., Ph. D. in Phys. and Math., Assoc. Prof., Senior Researcher of the Test Center, Brest State Technical University, Brest, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

NERODA Mikhail V., Ph. D. in Eng., Assoc. Prof., First Vice-Rector, Brest State Technical University, Brest, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

KHOLODAR Boris G., Ph. D. in Eng., Assoc. Prof., Senior Researcher of the Research Department, Brest State Technical University, Brest, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section MECHANICS OF DEFORMED SOLIDS
Year 2022
Issue 3(60)
Pages 77–84
Type of article RAR
Index UDK 004.94:620.172
DOI https://doi.org/10.46864/1995-0470-2022-3-60-77-84
Abstract The article considers computer simulation of tensile tests of a rectangular cross-section rod with zones formed during heat treatment by a moving highly concentrated heat source, the characteristics of which differ from the properties of the base material. Based on the results of finite element modeling, the stress-strain state of a rod with one or more zones of altered structure along its entire length and on part of the length is investigated. The stress concentration coefficients in the vicinity of the treatment zones are determined.
Keywords mechanical characteristics of the material, stress concentration coefficient, finite element method, local impact, material structure, stress intensity
  You can access full text version of the article.
Bibliography
  1. Muskhelishvili N.I. Nekotorye osnovnye zadachi matematicheskoy teorii uprugosti [Some basic problems of the mathematical theory of elasticity]. Moscow, Nauka Publ., Glavnaya redaktsiya fiziko-matematicheskoy literatury Publ., 1966. 708 p. (in Russ.).
  2. Neuber H. Kerbspannungslehre: Grundlagen für genaue Spannungsrechnung. Berlin, Springer-Verlag Berlin Heidelberg GmbH, 1937.
  3. Savin G.N. Kontsentratsiya napryazheniy okolo otverstiy [Stress concentration near holes]. Moscow, Leningrad, Gosudarstvennoe izdatelstvo tekhniko-teoreticheskoy literatury Publ., 1951. 496 p. (in Russ.).
  4. Aleksandrov A.Ya., et al. Prochnost, ustoychivost, kolebaniya. Tom 2 [Strength, stability, fluctuations. Volume 2]. Moscow, Mashinostroenie Publ., 1968. 463 p. (in Russ.).
  5. Spravochnik po koeffitsientam intensivnosti napryazheniy [Handbook of stress intensity coefficients]. Moscow, Mir Publ., 1990. Vol. 1, 447 p., vol. 2, 453 p. (in Russ.).
  6. Cherepanov G. P. Mekhanika khrupkogo razrusheniya [Mechanics of brittle fracture]. Moscow, Nauka Publ., 1974. 640 p. (in Russ.).
  7. Berezhnitskiy L.T., Delyavskiy M.V., Panasyuk V.V. Izgib tonkikh plastin s defektami tipa treshchin [Bending of thin plates with defects such as cracks]. Kiev, Nauchnaya mysl Publ., 1979. 400 p. (in Russ.).
  8. Peterson R.E. Stress concentration factors. New York, London, Sydney, Toronto, John Wiley and Sons, 1974.
  9. Bely A.V., Makushok E.M., Pobol I.L. Poverkhnostnaya uprochnyayushchaya obrabotka s primeneniem kontsentrirovannykh potokov energii [Surface hardening treatment with the use of concentrated energy flows]. Minsk, Nauka i tekhnika Publ., 1990. 78 p. (in Russ.).
  10. Ivantsievskiy V.V. Upravlenie strukturnym i napryazhennym sostoyaniem poverkhnostnykh sloev detaley mashin pri ikh uprochnenii s ispolzovaniem kontsentrirovannykh istochnikov nagreva i finishnogo shlifovaniya. Diss. dokt. tekhn. nauk [Control of the structural and stress state of the surface layers of machine parts during their hardening using concentrated sources of heating and finishing grinding. D. Sc. Thesis]. Novosibirsk, 2012. 425 p. (in Russ.).
  11. Sharapova D.M. Evolyutsiya struktury i svoystv konstruktsionnykh nizkolegirovannykh staley pri kratkovremennykh lokalnykh termicheskikh vozdeystviyakh kontsentrirovannymi istochnikami tepla. Diss. kand. tekhn. nauk [Evolution of structure and properties of structural low-alloy steels under shortterm local thermal effects by concentrated heat sources. Ph. D. Thesis]. Saint Petersburg, 2018. 140 p. (in Russ.).
  12. Gulakov S.V., Shcherbakov S.V., Zavarika N.G. Kompyuternoe modelirovanie napryazhenno-deformirovannogo sostoyaniya elementov sostavnykh konstruktsiy pri vozdeystvii lokalnogo istochnika nagreva [Computer simulation of the stress-strain state of elements of composite structures under the influence of a local heating source]. Reporter of the Priazovskyi State Technical University, 2004, iss. 14, pp. 223–226 (in Russ.).
  13. Grigoriev S.N., Ivannikov A.Yu., Prozhega M.V., Zakharov I.N., Kuznetsova O.G., Levin A.M. The influence of the highly concentrated energy treatments on the structure and properties of medium carbon steel. Metals, 2020, vol. 10, iss. 12. DOI: https://doi.org/10.3390/met10121669.
  14. Gulyaev A.P. Metallovedenie [Metallurgical science]. Moscow, Kniga po trebovaniyu Publ., 2020. 542 p. (in Russ.).
  15. Dinesh Babu P., Balasubramanian K.R., Buvanashekaran G. Laser surface hardening: a review. International journal of surface science and engineering, 2011, vol. 5, nos. 2–3, pp. 131–151.

Title of the article DETERMINATION OF THE EFFECTIVE THICKNESS OF HARDENED LAYER OF CARBURIZED GEARS
Authors

RUDENKO Sergei P., Ph. D. in Eng., Leading Researcher of the Laboratory of Metallurgy in Mechanical Engineering, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

VALKO Aleksandr L., Senior Researcher of the Laboratory of Metallurgy in Mechanical Engineering, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">valсThis email address is being protected from spambots. You need JavaScript enabled to view it.

SANDOMIRSKI Sergei G., D. Sc. in Eng., Assoc. Prof., Head of the Laboratory of Metallurgy in Mechanical Engineering, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section MECHANICAL ENGINEERING MATERIALS AND TECHNOLOGIES
Year 2022
Issue 3(60)
Pages 61–67
Type of article RAR
Index UDK 669.15:620.178.1
DOI https://doi.org/10.46864/1995-0470-2022-3-60-61-67
Abstract The methods are considered for determining the effective thickness of the hardened layer of metal parts listed in the standards STB 2307-2013 and STB ISO 18203-2019. The ambiguity of interpretation of the concept of effective thickness hэф of the hardened layer up to the half-transition zone is established for control of gears after the chemical heat treatment: carburizing and hardening. In practice, hэф is determined by the Vickers hardness distribution under the relevant load. In accordance with the standard ASTM E140-07, the Vickers hardness value of 50 HRC represents the Vickers hardness of 513 HV for non-austenitic structural steels when tested at 294.2 N. When testing Vickers hardness at lower loads, conversion tables or dependencies must be used. It has been shown that such measurements are more inaccurate at lower loads. To eliminate errors and increase accuracy of determining hэф of diffusion thickness of gear wheels after chemical-hardening, techniques are compared to determine hэф three: metallographic, mechanical and chemical. The Vickers hardness values determined during tests of structural non-austenitic steels with different loads correspond to the hardness value of 50 HRC. The values obtained can be applied to determine hэф of diffusion layers of surface-hardened parts corresponding to the half-transition zone.
Keywords Vickers method, hardness test, analytical dependence, surface layer, half-transition zone, effective thickness
  You can access full text version of the article.
Bibliography
  1. Zinchenko V.M. Inzheneriya poverkhnosti zubchatykh koles metodami khimiko-termicheskoy obrabotki [Surface engineering of gears by methods of chemical-thermal treatment]. Moscow, Moskovskiy gosudarstvennyy tekhnicheskiy universitet im. Baumana Publ., 2001. 303 p. (in Russ).
  2. Susin A.A. Khimiko-termicheskoe uprochnenie vysokonapryazhennykh detaley [Chemical heat reinforcement of heavily stressed components]. Minsk, Belorusskaya nauka Publ., 1999. 175 p. (in Russ).
  3. Kozlovskiy I.S. Khimiko-termicheskaya obrabotka shesteren [Chemical-thermal treatment of gears]. Moscow, Mashinostroenie Publ., 1970. 232 p. (in Russ).
  4. Alekseev V.I., Ananev V.M., Bulygina M.M. Aviatsionnye zubchatye peredachi i reduktory [Aircraft gears and gearboxes]. Moscow, Mashinostroenie Publ., 1981. 374 p. (in Russ).
  5. Bernst R., et al. Technologie der Waermebehandlung von Stahl. Leipzig, VEB Deutscher Verlag fuer Grundstoffindustrie, 1976.
  6. ASTM E140-07. Standard hardness conversion tables for metals relationship among Brinell hardness, Vickers hardness, Rockwell hardness, superficial hardness, Knoop hardness, and scleroscope hardness. 2007. 21 p.
  7. Standard of Belarus STB ISO 18203–2019. Stal. Izmerenie tolshchiny poverkhnostno-uprochnennogo sloya [Steel. Measuring the thickness of the surface-hardened layer]. Minsk, Gosstandart Publ., 2019. 16 p. (in Russ).
  8. Standard of Belarus STB 2307–2013. Poverkhnostno-uprochnennye sloi metallicheskikh detaley. Metody izmereniya tolshchiny [Surface-strengthened layers of metal parts. Thickness measuring methods]. Minsk, Gosstandart Publ., 2013. 16 p. (in Russ).
  9. Tesker E.I. Sovremennye metody rascheta i povysheniya nesushchey sposobnosti poverkhnostno uprochnennykh zubchatykh peredach transmissiy i privodov [Modern methods of calculating and increasing the load-bearing capacity of surface-hardened gears of transmissions and drives]. Moscow, Mashinostroenie Publ., 2011. 434 p. (in Russ).
  10. Rudenko S.P., Sandomirski S.G. Determinirovannaya analiticheskaya model soprotivleniya glubinnoy kontaktnoy ustalosti napryazhennogo materiala [Deterministic analytical model of resistance to deep contact fatigue of a stressed material]. Mechanics of machines, mechanisms and materials, 2021, no. 3, pp. 52–60 (in Russ).
  11. Rudenko S.P. Issledovanie soprotivleniya kontaktnoy ustalosti poverkhnostno uprochnennykh zubchatykh koles [Study of contact fatigue resistance of surface-hardened toothed wheels]. Proceedings of the National Academy of Sciences of Belarus. Physical-technical series, 2009, no. 4, pp. 48–53 (in Russ).
  12. Rudenko S.P., Valko A.L. Kontaktnaya ustalost zubchatykh koles transmissiy energonasyshchennykh mashin [Contact fatigue of power transmission gears of energy saturated machines]. Minsk, Belorusskaya nauka Publ., 2014. 126 p. (in Russ).
  13. Fudzita K., Yokhida A. Vliyanie glubiny tsementovannogo sloya i otnositelnogo radiusa krivizny na dolgovechnost pri kontaktnoy ustalosti tsementovannogo rolika iz khromomolibdenovoy stali [Influence of carburized layer depth and relative radius of curvature on the contact fatigue life of a cemented chromium-molybdenum steel roller]. Trudy amerikanskogo obshchestva inzhenerov-mekhanikov, 1981, vol. 103, no. 2, pp. 115–124 (in Russ.).
  14. State Standard R ISO 6507-1-2007. Materialy i splavy. Izmerenie tverdosti po Vikkersu. Chast 1. Metod izmereniya [Materials and alloys. Measurement of Vickers hardness. Part 1. Measurement method]. Moscow, Standartinform Publ., 2008. 15 p. (in Russ).
  15. Rudenko S.P., Valko A.L., Sandomirski S.G. Povyshenie tochnosti izmereniya tverdosti poverkhnostno uprochnennykh stalnykh izdeliy [Improving the accuracy of hardness measurement of surface-hardened steel products]. Stal, 2022, no. 6, pp. 38–42 (in Russ.).

Title of the article VIBRATIONS OF A THREE-LAYER CIRCULAR STEP PLATE UNDER PERIODIC IMPACT
Authors

LEONENKO Denis V., D. Sc. in Phys. and Math., Prof., Professor of the Department “Structural Mechanics”, Belarusian State University of Transport, Gomel, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

MARKOVA Marina V., Postgraduate Student of the Department “Structural Mechanics”, Belarusian State University of Transport, Gomel, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section MECHANICS OF DEFORMED SOLIDS
Year 2022
Issue 3(60)
Pages 68–76
Type of article RAR
Index UDK 539.3
DOI https://doi.org/10.46864/1995-0470-2022-3-60-68-76
Abstract Forced oscillations of a three-layer circular plate with step-variable thickness of the outer layers are analyzed. The deformation of the plate is described with the zig-zag theory. In thin border layers of plate Kirchhoff’s hypotheses are valid. In a relatively thick in thickness medium layer Timoshenko’s hypothesis on the straightness and incompressibility of the deformed normal is fulfilled. The equations of motion are derived from Hamilton’s variational principle. A special case of exposure is considered: periodic sequence of strokes with constant intensity. The problem is reduced to finding three required functions in each section, deflection, shear and radial displacement of the median plane of the filler. The solution is presented as a sum of quasi-static and dynamic components of the unknown displacements. Numerical results of the obtained solution are presented. The influence of the impact stress on the oscillatory character is analyzed.
Keywords circular three-layer plate, plate with step-variable thickness, forced vibration, periodic strokes
  You can access full text version of the article.
Bibliography
  1. Nguyen C.H., Butukuri R.R., Chandrashekhara K., Birman V. Dynamics and buckling of sandwich panels with stepped facings. International journal of structural stability and dynamics, 2011, no. 4(11), pp. 697–716.
  2. Nguyen C.H., Chandrashekhara K., Birman V. Enhanced static response of sandwich panels with honeycomb cores through the use of stepped facings. Journal of sandwich structures & materials, 2011, no. 2(13), pp. 237–260.
  3. Lal R., Rani R. On the use of differential quadrature method in the study of free axisymmetric vibrations of circular sandwich plates of linearly varying thickness. Journal of vibration and control, 2016, no. 7(22), pp. 1729–1748.
  4. Rani R., Lal R. Axially symmetric vibrations of circular sandwich plates of linearly varying thickness. Proc. 3rd International conference on soft computing for problem solving “Advances in intelligent systems and computing”. New Delhi, 2014, no. 258, pp. 169–181.
  5. Lal R., Rani R. On radially symmetric vibrations of circular sandwich plates of non-uniform thickness. International journal of mechanical sciences, 2015, no. 99, pp. 29–39.
  6. Lal R., Rani R. On the radially symmetric vibrations of circular sandwich plates with polar orthotropic facings and isotropic core of quadratically varying thickness by harmonic differential quadrature method. Meccanica, 2016, no. 51, pp. 611–634.
  7. Rani R., Lal R. Radially symmetric vibrations of exponentially tapered clamped circular sandwich plate using harmonic differential quadrature method. Mathematical analysis and its applications, 2015, no. 143, pp. 633–643.
  8. Süsler S., Türkmeni H. Nonlinear dynamic analysis of tapered sandwich plates with multi-layered faces subjected to air blast loading. International journal of mechanics and materials in design, 2017, no. 13, pp. 429–451.
  9. Jalali S.K., Heshmati M. Buckling analysis of circular sandwich plates with tapered cores and functionally graded carbon nanotubes-reinforced composite face sheets. Thin-walled structures, 2016, no. 100, pp. 14–24.
  10. Chang J.S., Chen H.C. Free vibrations of sandwich plates of variable thickness. Journal of sound and vibration, 1992, no. 2(155), pp. 195–208.
  11. Bauchau O., Craig J. Kirchhoff plate theory. Structural analysis, 2009, vol. 163, pp. 819–914.
  12. Timoshenko S.P. On the correction for shear the differential equation for transverse vibrations of the prismatic bars. Philosophical magazine and journal of science, 1921, no. 245(41), pp. 744–746.
  13. Bolotin V.V., Novichkov Yu.N. Mekhanika mnogosloynykh konstruktsiy [Mechanics of multilayer structures]. Moscow, Mashinostroenie Publ., 1980. 375 p. (in Russ.).
  14. Bolotin V.V. K teorii sloistykh plit [Towards the theory of layered slabs]. Izvestiya AN SSSR. Mekhanika i mashinostroenie, 1963, no. 3, pp. 65–72 (in Russ.).
  15. Novichkov Yu.N. Variatsionnye printsipy dinamiki i ustoychivosti mnogosloynykh obolochek [Variational principles of dynamics and stability of multilayer shells]. Trudy Moskovskogo energeticheskogo instituta. Dinamika i prochnost mashin, 1973, no. 164, pp. 14–22 (in Russ.).
  16. Grigolyuk E.I., Chulkov P.P. Ustoychivost i kolebaniya trekhsloynykh obolochek [Stability and vibrations of three-layer shells]. Moscow, Mashinostroenie Publ., 1973. 172 p. (in Russ.).
  17. Grigolyuk E.I., Chulkov P.P. Nelineynye uravneniya tonkikh mnogosloynykh obolochek regulyarnogo stroeniya [Nonlinear equations of thin multilayer shells of regular structure]. Inzhenernyy zhurnal. Mekhanika tverdogo tela, 1967, no. 1, pp. 163–169 (in Russ.).
  18. Leonenko D.V. Elastic bending of a three-layer circular plate with step-variable thickness. Mechanics of machines, mechanisms and materials, 2021, no. 1(54), pp. 25–29.
  19. Leonenko D.V. Lokalnoe nagruzhenie stupenchatoy krugovoy sendvich-plastiny [Local loading of a stepped circular sandwich plate]. Mechanics. Researches and innovations, 2021, no. 14(14), pp. 126–130 (in Russ.).
  20. Leonenko D.V. Poperechnyy izgib krugovoy sendvich-plastiny stupenchatoy tolshchiny [Transverse bending of a circular sandwich plate of stepped thickness]. Proceedings of Francisk Skorina Gomel State University, 2020, no. 6(123), pp. 151–155 (in Russ.).
  21. Parfenova V.S. Deformirovanie krugloy uprugoy trekhsloynoy plastiny so stupenchato-peremennoy granitsey [Deformation of a circular elastic three-layer plate with a step-variable boundary]. Mechanics. Researches and innovations, 2017, no. 10(10), pp. 157–163 (in Russ.).
  22. Starovoytov E.I., Tarlakovskiy D.V. Deformirovanie trekhsloynoy ortotropnoy plastiny stupenchato-peremennoy tolshchiny [Deformation of a three-layer orthotropic plate of stepwise variable thickness]. Fundamental and applied problems of technics and technology, 2014, no. 2(304), pp. 38–43 (in Russ.).
  23. Shlyakhin D.A. Vynuzhdennye osesimmetrichnye kolebaniya tonkoy krugloy plastiny stupenchato peremennoy tolshchiny i zhestkosti [Forced axisymmetric oscillations of a thin circular plate of stepwise variable thickness and stiffness]. News of higher educational institutions. Construction, 2013, no. 4(652), pp. 13–20 (in Russ.).
  24. Shlyahin D.A. Vynuzhdennye osesimmetrichnye kolebaniya tonkoy krugloy bimorfnoy plastiny stupenchato peremennoy tolshchiny i zhestkosti [Forced axisymmetric oscillations of a thin circular bimorphic plate of stepwise variable thickness and stiffness]. Engineering journal of Don, 2013, no. 1(24), pp. 36–45 (in Russ.).
  25. Hosseini-Hashemi Sh., Rezaee V., Atashipour S.R., Girhammar U.A. Accurate free vibration analysis of thick laminated circular plates with attached rigid core. Journal of sound and vibration, 2012, no. 25(331), pp. 5581–5596.
  26. Hosseini-Hashemi Sh., Derakhshani M., Fadaee M. An accurate mathematical study on the free vibration of stepped thickness circular/annular Mindlin functionally graded plates. Applied mathematical modelling, 2013, no. 6(37), pp. 4147–4164.
  27. Molla-Alipour M. Bending analysis of FG circular and annular plates with stepped thickness variations by using a new exact closed form solution. 2017. Available at: https://www.semanticscholar. org/paper/Bending-Analysis-of-FG-Circular-and-Annular- Plates-Molla-Alipour/a052dc4841b7b7f41692655a0da- 0f2abc14cfba1#paper-header.
  28. Zorich V.A. Matematicheskiy analiz. Chast 1 [Mathematical analysis. Part 1]. Moscow, MTsNMO Publ., 2012. 710 p. (in Russ.).
  29. Grigolyuk E.I., Kogan F.A. Sovremennoe sostoyanie teorii mnogosloynykh obolochek [The current status of the theory of multilayer shells]. Prikladnaya mekhanika, 1972, no. 6(8), pp. 5–17 (in Russ.).
  30. Carrera E. Historical review of zig-zag theories for multilayered plates and shells. Applied mechanics reviews, 2003, no. 3(56), рp. 287–308.
  31. Icardi U., Sola F. Assessment of recent zig-zag theories for laminated and sandwich structures. Composites Part B-engineering, 2016, no. 97, pp. 26–52.
  32. Nowacki W. Teoria sprężystości. Warszawa, Państwowe Wydawnictwo Naukowe, 1970.
  33. Zhou Z.H., Wong K.W., Xu X.S., Leung A.Y.T. Natural vibration of circular and annular thin plates by Hamiltonian approach. Journal of sound and vibration, 2011, no. 5(330), pp. 1005–1017.
  34. Markova M.V., Leonenko D.V. Postanovka nachalno-kraevoy zadachi ob osesimmetrichnykh kolebaniyakh krugovoy trekhsloynoy plastiny peremennoy tolshchiny [Definition of the initial-boundary value problem for axisymmetric vibrations of a circular three-layer plate with variable thickness]. Teoreticheskaya i prikladnaya mekhanika, 2022, iss. 36, pp. 3–10 (in Russ.).
  35. Starovoytov E.I., Pleskachevskiy Yu.M., Leonenko D.V., Tarlakovskiy D.V. Deformirovanie stupenchatoy kompozitnoy balki v temperaturnom pole [Straining of a step-variable thickness composite beam in a temperature field]. Inzhenerno-fizicheskii zhurnal, 2015, vol. 88, no. 4, pp. 987–993 (in Russ.).
  36. Starovoytov E.I. Poddubnyy A.A. Izgib trekhsloynogo sterzhnya so stupenchato-peremennoy granitsey, chastichno opertogo na uprugoe osnovanie [The bending of three-layer beam with variable border laying on the elastic basis]. Mechanics of machines, mechanisms and materials, 2011, no. 1(14), pp. 47–55 (in Russ.).
  37. Starovoytov E.I., Leonenko D.V., Rabinskiy L.N. Deformirovanie trekhsloynykh fizicheski nelineynykh sterzhney [Deformation of three-layer physically-nonlinear bars]. Moscow, MAI Publ., 2016. 184 p. (in Russ.).
  38. Tong K.N. Theory of mechanical vibration. New York, Wiley, 1960. 370 p.
  39. Aramanovich I.G., Levin V.I. Uravneniya matematicheskoy fiziki [Equations of mathematical physics]. Moscow, Nauka Publ., 1969. 288 p. (in Russ.).
  40. Markova M.V. Sobstvennye kolebaniya krugovoy trekhsloynoy stupenchatoy plastiny [Self-oscillations of the circular three-layer staged-thickness plate]. Mechanics. Researches and innovations, 2021, no. 14(14), pp. 147–158 (in Russ.).
  41. Bateman H., Arthur E. Higher transcendental functions. New York, McGraw-Hill, 1953, 990 p.
  42. Watson G.N. A treatise on the theory of Bessel functions. Cambridge University Press, 1944. 804 p.

Title of the article SELECTION OF THE RANGE OF GEAR RATIOS OF THE MECHANICAL PART OF THE ELECTROMECHANICAL POWER TRAIN OF THE TRACTOR
Authors

ZHDANOVICH Cheslav I., Ph. D. in Eng., Assoc. Prof., Associate Professor of the Department “Tractors”, Belarusian National Technical University, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

KALININ Nikita V., Senior Researcher of the R&D Center “Agricultural Engineering”, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section MECHANICAL ENGINEERING COMPONENTS
Year 2022
Issue 3(60)
Pages 52–60
Type of article RAR
Index UDK 629.3.014
DOI https://doi.org/10.46864/1995-0470-2022-3-60-52-60
Abstract A method has been developed for selecting the gear ratio of the mechanical part of the power train (MPPT) to work on agricultural operations of a tractor of the 5th drawbar class equipped with an electromechanical power train with a traction induction electric motor (TIM). It is assumed that there are two gears: the high one (n-th) for operation in transport mode and the low one (n–1st) for operation in operational and technological modes. The gear ratio MPPT uМЧТ,n, corresponding to the nth gear, is determined from the condition of ensuring the required maximum velocity of the tractor. The gear ratio of the MPPT uМЧТ(n–1), corresponding to the n–1st gear, must be in the range from the uМЧТ(n–1),р, at which the minimum plowing velocity will be provided at the nominal value of the voltage frequency supplied to the TIM, to the uМЧТ(n–1),max, determined by from the condition of providing the maximum possible velocity range of the tractor with only the n-th gear without overlapping its n–1st gear. A formula is also proposed for determining the value of the uМЧТ(n–1),v, at which the tractor can operate with the maximum velocity permissible for a given agricultural operation. If uМЧТ(n–1),v < uМЧТ(n–1) < uМЧТ(n–1),р, then the entire velocity range for a given agricultural operation will be provided when working in the n–1st gear. In order to determine the uМЧТ(n–1) with the best traction efficiency, it is proposed to carry out tractor traction calculation for the values of uМЧТ(n–1) taken in the range from uМЧТ(n–1),р to uМЧТ(n–1),max with a certain step. After that, for the selected value uМЧТ(n–1), it is necessary to calculate the TIM losses during tractor operation in the entire velocity range provided by the n–1st gear. If the thermal mode of the TIM is not performed when the tractor is moving at low velocities in the n–1st gear, then it is necessary either to take a larger value of the uМЧТ(n–1) at which it is performed, or in case of a small excess of the permissible power losses of the TIM, do not increase the uМЧТ(n–1), but take this into account when designing the TIM cooling system.
Keywords tractor, traction induction electric motor, gear ratio, mechanical part of the power train, electromechanical power train, drawbar pull, slipping, theoretical velocity, actual velocity, traction efficiency
  You can access full text version of the article.
Bibliography
  1. Zhdanovich Ch.I., Kalinin N.V. Opredelenie peredatochnykh otnosheniy mekhanicheskoy chasti elektromekhanicheskoy transmissii traktora [Determination of transmission gear ratio in mechanical part of tractor electro-mechanical transmission]. Science & technique, 2016, vol. 15, no. 1, pp. 29–36. DOI: https://doi.org/10.21122/2227-1031-2016-15-1-29-36 (in Russ.).
  2. Zhdanovich Ch.I., Kalinin N.V. Analiz effektivnosti ispolzovaniya nakopiteley energii na traktore s elektromekhanicheskoy transmissiey [Efficiency analysis of energy accumulating mechanism for tractor with electromechanical transmission]. Science & technique, 2017, vol. 16, no. 1, pp. 73–82. DOI: https://doi.org/10.21122/2227-1031-2017-16-1-73-82 (in Russ.).
  3. Poddubko S.N., et al. Traktory XXI veka: sostoyanie i perspektivy [Tractors of the 21st century: state and prospects]. Minsk, Belorusskaya nauka Publ., 2019. 207 p. (in Russ.).
  4. Amelchenko P.A., Zhukovskiy I.N., Pugachev A.P., Kaminskiy P.F., Stasilevich A.G., Klyuchnikov A.V. Tyagovyy elektroprivod i elektrootbor moshchnosti kak etap razvitiya teorii i konstruktsii selskokhozyaystvennogo traktora [Traction electric drive and electric power take-off as a stage in the development of the theory and design of an agricultural tractor]. Aktualnye voprosy mashinovedeniya, 2014, iss. 3, pp. 88–94 (in Russ.).
  5. Zhdanovich Ch.I., Kalinin N.V. Realizatsiya tyagovykh vozmozhnostey traktora s elektromekhanicheskoy transmissiey [Realization of traction capabilities of a tractor with an electromechanical power train]. Mechanics of machines, mechanisms and materials, 2021, no. 1(54), pp. 5–14. DOI: https://doi.org/10.46864/1995-0470-2020-1-54-5-14 (in Russ.).
  6. Zhdanovich Ch.I., Kalinin N.V. Tyagovyy KPD traktora s elektromekhanicheskoy transmissiey [Traction efficiency of a tractor with an electromechanical power train]. Aktualnye voprosy mashinovedeniya, 2020, iss. 9, pp. 131–135 (in Russ.).
  7. Zhdanovich Ch.I., Kalinin N.V. Vliyanie reaktivnoy moshchnosti na tyagovyy KPD traktora s elektromekhanicheskoy transmissiey [Effect of reactive power on the tractor with an electromechanical power train]. Aktualnye voprosy mashinovedeniya, 2021, iss. 10, pp. 45–49 (in Russ.).
  8. Zhdanovich Ch.I., Kalinin N.V. Vybor sposoba regulirovaniya tyagovogo asinkhronnogo elektrodvigatelya traktora i postroenie mekhanicheskoy kharakteristiki [Selection of method for regulation of tractor propulsion asynchronous electric motor and construction of mechanical characteristics]. Science& technique, 2015, no. 3, pp. 60–64 (in Russ.).
  9. Zhdanovich Ch.I., Kalinin N.V. Opredelenie maksimalnogo momenta na kolesakh traktora s elektromekhanicheskoy transmissiey [Determination of maximum moment on wheels of tractor with electromechanical transmission]. Materialy Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii, posvyashchennoy 60-letiyu kafedry “Traktory” BNTU “Problemy proektirovaniya i razvitiya traktorov, mobilnykh mashin, gorodskogo elektrotransporta” [Proc. International scientific and technical conference devoted to the 60th anniversary of “Tractors” Department of Belarussian National Technical University “Problems in designing and development of tractors, mobile machinery, urban electric transport”]. Minsk, 2013, pp. 54–59 (in Russ.).
  10. Zhdanovich Ch.I., Kalinin N.V. Zavisimost kharakteristik traktora s elektromekhanicheskoy transmissiey ot temperatury obmotok tyagovogo elektrodvigatelya [Dependence of characteristics of tractor with mechanical transmission on temperature of traction electric motor windings]. Materialy Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii, posvyashchennoy 60-letiyu kafedry “Traktory” BNTU “Problemy proektirovaniya i razvitiya traktorov, mobilnykh mashin, gorodskogo elektrotransporta” [Proc. International scientific and technical conference devoted to the 60th anniversary of “Tractors” Department of Belarussian National Technical University “Problems in designing and development of tractors, mobile machinery, urban electric transport”]. Minsk, 2013, pp. 60–67 (in Russ.).
  11. Katsman M.M. Elektricheskie mashiny [Electric machinery]. Moscow, Vysshaya shkola Publ., 2001. 463 p. (in Russ.).
  12. Syromyatnikov I.A. Rezhimy raboty asinkhronnykh i sinkhronnykh dvigateley [Operating modes of asynchronous and synchronous motors]. Moscow, Energoatomizdat Publ., 1984. 240 p. (in Russ.).
  13. Guskov V.V., Belev N.N., Atamanov Yu.E., Bocharov N.F., Ksenevich I.P., Solonskiy A.S. Traktory. Teoriya [Tactors. Theory]. Moscow, Mashinostroenie Publ., 1988. 376 p. (in Russ.).
  14. Dyakov I.Ya., Prikhodko L.S., Shilyaev V.A., Zabaluev M.G., Kozlov V.F. Ob ispolzovanii selskokhozyaystvennykh traktorov na rabotakh razlichnogo vida [On the use of agricultural tractors in various types of work]. Traktory i selskokhozyaystvennye mashiny, 1979, no. 7, pp. 7–9 (in Russ.).
  15. Plug PPO-9-45K [Plough PPO-9-45K]. Available at: http://mrz.by/catalog/products-catalog/zashita-ressora/plug-ppo-8- 40k.html (accessed 20 May 2022) (in Russ.).
  16. Plug PN-8-35U [Plough PN-8-35U]. Available at: http://www. belarus-tractor.com/catalog/mounted_plows_ploughing_corral/plow-pn-8-35u/ (accessed 30 May 2022) (in Russ.).
  17. Plug oborotnyy PO-8 [Reversible plough PO-8]. Available at: http://www.tehmash.by/productions/doc/289 (accessed 30 May 2022) (in Russ.).
  18. Plug PPO-8RK [Plough PPO-8RK]. Available at: https://mgw. by/products/plows/negotiable/with-pneumo-protection/plugppo8-pk/ (accessed 10 June 2022) (in Russ.).
  19. Agregat pochvoobrabatyvayushchiy posevnoy mnogofunktsionalnyy APPM-6 [Multifunctional tillage sowing unit APPM-6]. 2013. Available at: http://www.mrz.by/state/AA:navID.130/ AC:-1.180003630601/ (accessed 22 April 2022) (in Russ.).
  20. Kultivator parovoy KP-9 [Steam cultivator KP-9]. Available at: http://www.mrz.by/state/AA:navID.131/AC:-1.180003630783/ (accessed 22 April 2022) (in Russ.).
  21. Kholodov A.M., Nichke V.V., Nazarov L.V. Zemleroyno-transportnye mashiny [Earthmoving and transport vehicles]. Kharkiv, Vysshaya shkola Publ., 1982. 192 p. (in Russ.).
  22. Traktor BELARUS-3022.DTs1 [Tractor BELARUS-3022. DTs1]. Available at: http://www.belarus-tractor.com/catalog/ belarus-3022dv/belarus-3022dc_1/ (accessed 30 May 2022) (in Russ.).
  23. Traktor BELARUS-3522 [Tractor BELARUS-3522]. Available at: http://www.belarus-tractor.com/catalog/belarus-3522/belarus- 3522c/ (accessed 30 May 2022) (in Russ.).
  24. State Standard IEC 60034-1-2014. Mashiny elektricheskie vrashchayushchiesya. Chast 1. Nominalnye znacheniya parametrov i ekspluatatsionnye kharakteristiki [Rotating electrical machines. Part 1. Rating and performance]. Minsk, Gosstandart Publ., 2017. 58 p. (in Russ.)
  25. State Standard 2582-2013. Mashiny elektricheskie vrashchayushchiesya tyagovye. Obshchie tekhnicheskie usloviya [Rotating electrical traction machines for rail and road vehicles. General technical specifications]. Minsk, Gosstandart Publ., 2016. 52 p. (in Russ.).
  26. Bekishev R.F., Dementev Yu.N. Obshchiy kurs elektroprivoda [General course on electric drive]. Tomsk, Tomskiy politekhnicheskiy universitet Publ., 2010. 302 p. (in Russ.).
  27. Klyuchev V.I. Teoriya elektroprivoda [Electric drive theory]. Moscow, Energoatomizdat Publ, 2001. 704 p. (in Russ.).