Title of the article MECHANISM OF THE FORMATION AND OPTIMIZATION OF THE COMPOSITION AND SYNTHESIS MODES OF THE GREASE CONTAINING THE GRAPHENE-LIKE CARBON
Authors

ZHORNIK Viktor I., D. Sc. in Eng., Prof., Head of the Department of Technologies of Mechanical Engineering and Metallurgy – Head of the Laboratory of Nanostructured and Superhard Materials of the R&D Center “Mechanical Engineering Technologies and Processing Equipment”, oint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

IVAKHNIK Anton V., Ph. D. in Eng., Assoc. Prof., Leading Researcher of the Laboratory of Nanostructured and Superhard Materials of the R&D Center “Mechanical Engineering Technologies and Processing Equipment”, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

PARNITSKY Alexander M., Ph. D. in Eng., Assoc. Prof., Senior Researcher of the Laboratory of Nanostructured and Superhard Materials of the R&D Center “Mechanical Engineering Technologies and Processing Equipment”, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

ADAMEIKO Andrei S., Graduate Student of the Laboratory of Nanostructured and Superhard Materials of the R&D Center “Mechanical Engineering Technologies and Processing Equipment”, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section MATERIALS SCIENCE IN MECHANICAL ENGINEERING
Year 2025
Issue 4(73)
Pages 86–97
Type of article RAR
Index UDK 669.018.95
DOI https://doi.org/10.46864/1995-0470-2025-4-73-86-97
Abstract The article considers a formation mechanism of the grease with the hybrid dispersed phase including a soap component in the form of the salts of the higher carboxylic acids (in particular, the lithium salt of the 12-hydroxystarinic acid – 12-LioSt) and non-soap component in the form of the highly dispersed particles of the organic or inorganic origin (in particular, the particles of the graphene-like carbon (GLC), thermally expanded graphite). The mathematical regression model of the lithium grease with the hybrid dispersed phase of the 12-LioSt-GLC composition is developed, that makes it possible to determine the component composition (concentration of the lithium 12-oxystearate and GLC) and the synthesis mode (heat treatment temperature of the reaction mass) depending on the required level of the rheological (penetration) and tribological (welding load) properties of the grease.
Keywords grease, hybrid dispersed phase, soap thickener, graphene-like carbon, rheological and tribological properties, regression model, component composition, heat treatment mode
  You can access full text version of the article.
Bibliography
  1. Mang T., Dresel W. Lubricants and lubrication. Weinheim, Wiley-VCH Verlag GmbH & Co. KGaA, 2007. 890 p. DOI: https://doi.org/10.1002/9783527610341.
  2. Rudnick L.R. Lubricant additives: chemistry and applications. Boca Raton, Taylor & Francis Group, 2009. 790 p.
  3. Ishchuk Yu.L. Sostav, struktura i svoystva plastichnykh smazok [Composition, structure and properties of plastic lubricants]. Kiev, Nauchnaya mysl Publ., 1996. 510 p. (in Russ.).
  4. Lyubinin I.A., Zheleznyy L.V. Vysokotemperaturnye plastichnye smazki: sostoyanie i perspektivy proizvodstva v stranakh SNG [High-temperature plastic lubricants: condition and production prospects in CIS countries]. Friction & lubrication in machines and mechanisms, 2013, no. 7, pp. 30–35 (in Russ.).
  5. Fuks I.G., Shibryaev S.B. Sostav, svoystva i proizvodstvo plastichnykh smazok [Composition, properties and production of plastic lubricants]. Moscow, GANG Publ., 1992. 157 p. (in Russ.).
  6. Zhornik V.I., Ivakhnik A.V. Plastichnaya smazka s gibridnoy litiy-kaltsievoy dispersnoy fazoy [Grease with hybrid lithiumcalcium dispersed phase]. Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya, posvyashchennaya 55-letiyu Polotskogo gosudarstvennogo universiteta imeni Evfrosinii Polotskoy “Innovatsionnye tekhnologii v mashinostroenii” [International scientific and technical conference dedicated to the 55th anniversary of Euphrosyne Polotskaya State University of Polotsk “Innovative technologies in mechanical engineering”], Novopolotsk, 2023, pp. 133–135 (in Russ.).
  7. Ivakhnik A.V., Zhornik V.I., Zeynalov E. Funktsionalnye i tekhniko-ekonomicheskie preimushchestva plastichnykh smazok s gibridnoy dispersnoy fazoy [Functional and technical and economic advantages of greases with hybrid dispersed phase]. Trudy 15 Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii “Tribologiya – mashinostroeniyu” [Proc. 15th International scientific and technical conference “Tribology for mechanical engineering”]. Moscow, 2024, pp. 79–81 (in Russ.).
  8. Abramov A.N., et al. Sravnitelnaya otsenka tribotekhnicheskikh svoystv RVS “Forsan” i disulfida molibdena v kachestve dobavok k smazochnym materialam [The analysis of tribotechnical properties of repair-reductive composition “Forsan” and molibdenum disulfide in different schemes of tests]. Friction& lubrication in machines and mechanisms, 2008, no. 12, pp. 31–35 (in Russ.).
  9. Gorlenko A.O., Shupikov I.L., Prudnikov M.I. Effektivnost primeneniya disulfida molibdena v kachestve antifriktsionnogo komponenta smazochnykh masel [Efficiency of the disulfide of molybdenum as the antifrictional component of lubricant oils]. Bulletin of Bryansk State Technical University, 2014, no. 1(41), pp. 18–22 (in Russ.).
  10. Zhornik V.I. Primenenie termorasshirennogo grafita v plastichnykh smazochnykh materialakh [Application of expanded graphite in greases]. Aktualnye voprosy mashinovedeniya, 2013, iss. 2, pp. 408–411 (in Russ.).
  11. Umanskaya O.I., et al. Vliyanie fiziko-khimicheskikh kharakteristik rasshirennogo grafita na svoystva plastichnykh smazok [The effect of the physico-chemical characteristics of expanded graphite on the properties of lubricants]. Khimiya i tekhnologiya topliv i masel, 1988, no. 2, pp. 32–33 (in Russ.).
  12. Kim E.V., Golubev E.V. Sposob polucheniya smazochnoy kompozitsii [Method to produce lubricant composition]. Patent RU, no. 2428462С1, 2011 (in Russ.).
  13. Zhornik V.I., Ivakhnik A.V., Ivakhnik V.P. Sposob polucheniya plastichnoy smazki [Method to produce a grease]. Patent BY, no. 22180, 2018 (in Russ.).
  14. Ishchuk Yu.L. Vliyanie sostava dispersnoy fazy na strukturu i svoystva oleogeley – plastichnykh smazok [The effect of the composition of the dispersed phase on the structure and properties of oleogels, greases]. Fiziko-khimicheskaya mekhanika i liofilnost dispersnykh sistem, 1983, iss. 15, pp. 63–75 (in Russ.).
  15. Zhornik V.I., Zapolsky A.V., Ivakhnik A.V. The structure and properties of a biodegradable grease with a mixed dispersion medium and a heterogeneous lithium–calcium dispersed phase. Journal of friction and wear, 2022, vol. 43, iss. 4, pp. 229–235. DOI: https://doi.org/10.3103/S1068366622040122.
  16. Karavaev D., Makarova L., Degtyaryov A., Troshkov K. Opredelenie nasypnoy plotnosti termorasshirennogo grafita [Determination the bulk density of thermoexpanded graphite]. Izvestiya Samarskogo nauchnogo tsentra RAN, 2013, vol. 15, no. 4–2, pp. 360–362 (in Russ.).
  17. Zhornik V.I., Zapolsky A.V., Ivakhnik A.V. Struktura i svoystva biorazlagaemoy plastichnoy smazki so smeshannoy dispersionnoy sredoy i geterogennoy litiy-kaltsievoy dispersnoy fazoy [Structure and properties of the biodegradable grease with the mixed dispersion medium and heterogeneous lithium-calcium dispersed phase]. Friction and wear, 2022, vol. 43, no. 4, pp. 351–360. DOI: https://doi.org/10.32864/0202-4977-2022-43-4-351-360 (in Russ.).
  18. Zhornik V.I., Zapolsky A.V., Ivakhnik A.V., Parnitsky A.M. Development of the method and optimization of the composition and modes of obtaining the biodegradable grease with the lithium-calcium thickener. Mechanics of machines, mechanisms and materials, 2021, no. 2(55), pp. 60–72. DOI: https://doi.org/10.46864/1995-0470-2021-2-55-60-72.
  19. Spiridonov A.A. Planirovanie eksperimenta pri issledovanii tekhnologicheskikh protsessov [Planning an experiment in the study of technological processes]. Moscow, Mashinostroenie Publ., 1981. 184 p. (in Russ.).

Title of the article EXPERIMENTAL MECHANICS OF WEAR-FATIGUE DAMAGE
Authors

BOGDANOVICH Alexander V., D. Sc. in Eng., Prof., Professor of the Department of Theoretical and Applied Mechanics, Belarusian State University, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

BASINIUK Vladimir L., D. Sc. in Eng., Prof., Chief of the R&D Center “Mechanical Engineering Technologies and Processing Equipment” – Head of the Laboratory of Gearing Systems and Processing Equipment, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

YELOVOY Oleg M., Ph. D. in Eng., Deputy Director General for Research and Innovations, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section TRIBO-FATIGUE SYSTEMS MECHANICS
Year 2025
Issue 4(73)
Pages 76–85
Type of article RAR
Index UDK 531; 004.8
DOI https://doi.org/10.46864/1995-0470-2025-4-73-76-85
Abstract The article discusses a number of terms and concepts related to fatigue fracture mechanics, tribology, and tribo-fatigue in the system of scientific disciplines. A hierarchical structure of some objects studied in mechanics is proposed, and a comparative analysis is given for research and calculation methods for objects studied in fatigue fracture mechanics, tribology, and tribo-fatigue. The principle of forming unified methods of wear-fatigue testing is considered in the case when the basic method of fatigue testing is bending with rotation, and a cylindrical sample with a working part diameter of 10 mm is adopted as a standard. A description of the developed methods and equipment for carrying out wear-fatigue tests, technical characteristics of machines for such tests, including the latest joint developments of Belarusian State University and the Joint Institute of Mechanical Engineering of the NAS of Belarus are given. Trends in the development of equipment for mechanical testing of materials and mechanical systems are discussed.
Keywords wear-fatigue damage, active system, wear-fatigue testing, friction pair, equipment, testing methods
  You can access full text version of the article.
Bibliography
  1. Sosnovskiy L.А. О kompleksnoy оtsenke nadezhnosti silovykh sistem [On the comprehensive assessment of the reliability of active systems]. Tezisy dokladov Respublikanskoy nauchno-technicheskoy konferentsii “Puti povysheniya tekhnicheskogo urovnya i nadezhnosti mashin” [Abstracts of papers of the Republican scientific and technical conference “Ways to improve the technical level and reliability of machines”]. Minsk, 1986, p. 29 (in Russ.).
  2. Sosnovskiy L.А. Nadezhnost i dolgovechnost elementov silovogo metallopolimernogo tribosopryazheniya v protsesse iznosoustalostnykh ispitaniy [Reliability and durability of elements of power metal-polymer tribocoupling in the process of wear-fatigue tests]. Nadezhnost i dolgovechnost mashin i sooruzheniy, 1986, no. 9, pp. 93–102 (in Russ.).
  3. Sosnovskiy L.А. Kompleksnaya otsenka nadezhnosti silovykh sistem po kriteriyam soprotivleniya ustalosti i iznosostoykosti (osnovy tribofatiki) [Comprehensive assessment of the reliability of active systems based on fatigue and wear resistance criteria (fundamentals of tribo-fatigue)]. Gomel, Belorusskiy institut inzhenerov zheleznodorozhnogo transporta Publ., 1988. 56 p. (in Russ.).
  4. Sosnovskiy L.А. Mekhanika iznosoustalostnogo povrezhdeniya [Mechanics of wear-fatigue damage]. Gomel, Belorusskiy gosudarstvennyy universitet transporta Publ., 2007. 434 p. (in Russ.).
  5. Vitiaz P.А., Vysotskiy M.S., Sosnovskiy L.А. Ob obektakh, izuchaemykh v mekhanike [About objects studied in mechanics]. Teoreticheskaya i prikladnaya mekhanika, 2008, iss. 23, pp. 3–12 (in Russ.).
  6. Vysotskiy M.S., et al. Novye podkhody v mekhanike iznosoustalostnogo povrezhdeniya i razrusheniya [New approaches in the mechanics of wear-fatigue damage and fracture]. 3 Belorusskiy kongress po teoreticheskoy i prikladnoy mekhanike “Mekhanika-2007” [3rd Belarusian congress on theoretical and applied mechanics “Mechanics-2007”], Minsk, 2007, pp. 38–114 (in Russ.).
  7. Sosnovskiy L.А. Mekhanika ustalostnogo razrusheniya [Fatigue fracture mechanics]. Gomel, NPO “TRIBOFATIKA” Publ., 1994. Part 1, 328 p.; part 2, 340 p. (in Russ.).
  8. Troshchenko V.T., Sosnovskiy L.А. Soprotivlenie ustalosti metallov i splavov [Fatigue resistance of metals and alloys]. Kiev, Nauchnaya mysl Publ., 1987. Vol. 1, 510 p.; vol. 2, 825 p. (in Russ.).
  9. Bathiar C., Paris P.C. Gigacycle fatigue in mechanical practice. New York, Marcel Dekker, 2004. 328 p. DOI: https://doi.org/10.1201/9780203020609.
  10. Gouth H.J. The fatigue of metals. London, Scott, Greenwood and Son, 1924. 304 p.
  11. Garkunov D.N. Tribotekhnika [Tribotechnics]. Moscow, Mashinostroenie Publ., 1985. 424 p. (in Russ.).
  12. Rabinovicz E. Friction and wear of materials. New York, John Wiley & Sons Inc, 1965. 244 p.
  13. Blau P.J. Friction science and technology. New York, Marcel Dekker, 1996. 399 p.
  14. Amiri M., Khonsari M.M., Brahmeshwarkar S. On the relationship between wear and thermal response in sliding systems. Tribology letters, 2010, vol. 38, iss. 2, pp. 147–154. DOI: https://doi.org/10.1007/s11249-010-9584-6.
  15. Beheshti A., Khonsari M.M. On the prediction of fatigue crack initiation in rolling/sliding contacts with provision for loading sequence effect. Tribology international, 2011, vol. 44, iss. 12, pp. 1620–1628. DOI: https://doi.org/10.1016/j.triboint.2011.05.017.
  16. Aghdam A.B., Beheshti A., Khonsari M.M. On the fretting crack nucleation with provision for size effect. Tribology international, 2012, vol. 47, pp. 32–43. DOI: https://doi.org/10.1016/j.triboint.2011.10.001.
  17. Sosnovskiy L.A., Makhutov N.A., Drozdov Yu.N. Tribofatika: novye idei v perspektivnom napravlenii [Tribo-fatigue: new ideas in a promising direction]. Gomel, Belorusskiy institut inzhenerov zheleznodorozhnogo transporta Publ., 1990. 7 p. (in Russ.).
  18. Sosnovskiy L.А. Tribofatika: problemy i perspektivy [Tribofatigue: problems and prospects]. Doklad na tematicheskoy vystavke AN SSSR “Matematika i mekhanika — narodnomu khozyaystvu” [Presentation at the thematic exhibition of the Academy of Sciences of the Soviet Union “Mathematics and mechanics for national economy”]. Gomel, 1989, 65 p. (in Russ.).
  19. Sosnovskiy L.А., Makhutov N.A. Metodologicheskie problemy kompleksnoy otsenki povrezhdennosti i predelnogo sostoyaniya silovykh sistem (obzornaya statya) [Methodological problems of complex assessment of damage and limit state of active systems (review article)]. Industrial laboratory. Diagnostics of materials, 1991, vol. 57, no. 5, pp. 27–40 (in Russ.).
  20. Vysotskiy M.S., et al. Tribofatika – novye puti dlya povysheniya nadezhnosti mashin [Tribo-fatigue – new ways to improve machine reliability]. Proceedings of the National Academy of Sciences of Belarus. Physico-technical series, 1994, no. 4, pp. 32–41 (in Russ.).
  21. Makhutov N.A., Sosnovskiy L.A., Gao V.-C. Metodologicheskie osnovy tribofatiki [Methodological foundations of tribo-fatigue]. Industrial laboratory. Diagnostics of materials, 2002, vol. 68, no. 6, pp. 29–41 (in Russ.).
  22. Bogdanovich А.V. Slovo o tribofatike [A word about tribo-fatigue]. Gomel, Minsk, Moscow, Kiev, Rеmika, 1996. 132 p. (in Russ.).
  23. Sosnovskiy L.А. Surprises of tribo-fatigue. Proc. World tribology congress III. Washington, 2005, pp. 27–28. DOI: https://doi.org/10.1115/WTC2005-63082.
  24. Krasnevskiy L.G. O tribofatike [About tribo-fatigue]. Minsk, NIRUP “Belavtotraktorostroenie” Publ., 2005. 83 p. (in Russ.).
  25. Sosnovskiy L.А. Tribo-fatigue. Wear-fatigue damage and its prediction. Berlin, Springer, 2005. 351 p. DOI: https://doi.org/10.1007/978-3-540-27027-0.
  26. Sherbakov S.S., Sosnovskiy L.А. Mekhanika tribofaticheskikh sistem [Mechanics of tribo-fatigue systems]. Minsk, Belorusskiy gosudarstvennyy universitet Publ., 2011. 407 p. (in Russ.).
  27. Sosnovskiy L.А., Zhuravkov M.A., Sherbakov S.S. Fundamentalnye i prikladnye zadachi tribofatiki [Fundamental and applied problems of tribo-fatigue]. Minsk, Belorusskiy gosudarstvennyy universitet Publ., 2011. 488 p. (in Russ.).
  28. Trudy 6 Mezhdunarodnogo simpoziuma po tribofatike, posvyashchennogo 25-letiyu razvitiya issledovaniy po tribofatike i 75-letiyu so dnya rozhdeniya L.A. Sosnovskogo “Tribofatika” [Proc. 6th International symposium on tribo-fatigue (ISTF 2010), dedicated to the 25th anniversary of the tribo-fatigue research development and the 75th anniversary of L.A. Sosnovskiy “Tribo-fatigue”]. Minsk, Belorusskiy gosudarstvennyy universitet Publ., 2010, part 1, 839 p.; part 2, 725 p. (in Russ.).
  29. Bhushan B. Principles and applications of tribology. New York, John Wiley & Sons, 1999. 1020 p.
  30. Halling J. Principles of tribology. London, McMillan Press, 1978. 401 p. DOI: https://doi.org/10.1007/978-1-349-04138-1.
  31. Bauer R.G. Mechanical wear prediction and prevention. New York, Marcel Dekker, 1994. 657 p.
  32. Mishkin N.K., Petrokovets M.I. Tribologiya. Printsipy i prilozheniya [Tribology. Principles and applications]. Gomel, Institut mekhaniki metallopolimernykh sistem imeni V.A. Belogo NAN Belarusi Publ., 2002. 304 p. (in Russ.).
  33. Chichinadze A.V. et al. Trenie, iznos, smazka (tribologiya i tribotekhnika) [Friction, wear, lubrication (tribology and tribotechnics)]. Moscow, Mashinostroenie Publ., 2003. 575 p. (in Russ.).
  34. Surface modification and mechanisms: friction, stress and reaction engineering. New York, Marcel Dekker, 2004. 747 p. DOI: https://doi.org/10.1201/9780203021545.
  35. Kragelskiy I.V. Trenie i iznos [Friction and wear]. Moscow, Mashinostroenie Publ., 1968. 480 p. (in Russ.).
  36. Godet M. Third-bodies in tribology. Wear, 1990, vol. 136, iss. 1, pp. 29–45. DOI: https://doi.org/10.1016/0043-1648(90)90070-Q.
  37. Sosnovskiy L.А. Problemy kompleksnoy otsenki povrezhdennosti i predelnogo sostoyaniya silovykh sistem. Osnovnye terminy [Problems of complex assessment of damage and limit state of active systems. Basic terms]. Gomel, Belorusskiy institut inzhenerov zheleznodorozhnogo transporta Publ., 1990. 10 p. (in Russ.).
  38. Sosnovskiy L.А. Tribofatika: osnovnye terminy i opredeleniya [Tribo-fatigue: Basic terms and definitions]. Friction and wear, 1992, vol. 13, no. 4, pp. 728–734 (in Russ.).
  39. Standard of Belarus STB 994-95. Tribofatika. Terminy i opredeleniya [Tribo-fatigue. Terms and definitions]. Minsk, Belorusskiy gosudarstvennyy institut standartizatsii i sertifikatsii Publ., 1995. 98 p. (in Russ.).
  40. Аndronov P.V., et al. Tribofatika [Tribo-fatigue]. Minsk, Gomel, NPO “TRIBOFATIKA” Publ., 1996. 136 p. (in Russ.).
  41. State Standard 30638-99. Tribofatika. Terminy i opredeleniya [Tribo-fatigue. Terms and definitions]. Minsk, Belorusskiy gosudarstvennyy institut standartizatsii i sertifikatsii Publ., 1999. 17 p. (in Russ.).
  42. Sosnovskiy L.А. Friktsionno-mekhanicheskaya ustalost silovykh sistem [Mechano-sliding fatigue of active systems]. Vestnik mashinostroeniya, 1992, no. 8–9, pp. 14–18 (in Russ.).
  43. Sosnovskiy L.А., Makhutov N.A., Shurinov V.A. Fretting-ustalost: osnovnye zakonomernosti (obobshchayushchaya statya) [Fretting fatigue: basic patterns (summary article)]. Industrial laboratory, 1992, vol. 58, no. 8, pp. 45–62 (in Russ.).
  44. Sosnovskiy L.А., Makhutov N.A., Shurinov V.A. Friktsionno-mekhanicheskaya ustalost: osnovnye zakonomernosti (obobshchayuschhaya statya) [Mechano-sliding fatigue: basic patterns (summary article)]. Industrial laboratory, 1992, vol. 58, no. 9, pp. 18–35 (in Russ.).
  45. Sosnovskiy L.А., Makhutov N.A., Shurinov V.A. Kontaktno-mekhanicheskaya ustalost: osnovnye zakonomernosti (obobshchayushchaya statya) [Mechano-rolling fatigue: basic patterns (summary article)]. Industrial laboratory, 1992, vol. 58, no. 11, pp. 44–61 (in Russ.).
  46. Sosnovskiy L.А., Makhutov N.A., Shurinov V.A. Korrozionno-mekhanicheskaya ustalost: osnovnye zakonomernosti (obobshchayushchaya statya) [Mechano-corrosion fatigue: basic patterns (summary article)]. Industrial laboratory, 1993, vol. 59, no. 7, pp. 33–44 (in Russ.).
  47. Sosnovskiy L.А., Sherbakov S.S. Surprises of tribo-fatigue. Мinsk, Magic Book, 2009. 199 p.
  48. Sosnovskiy L.А., Zhuravkov M.A., Sherbakov S.S. Vvedenie v tribofatiku [Introduction to tribo-fatigue]. Minsk, Belorusskiy gosudarstvennyy universitet Publ., 2010. 77 p. (in Russ.).
  49. Sosnovskiy L.А. Mekhanika iznosoustalostnogo povrezhdeniya [Mechanics of wear-fatigue damage]. Trudy 3 Mezhdunarodnogo simpoziuma po tribofatike [Proc. 3rd International symposium on tribo-fatigue]. Beijing, 2000, pp. 84–101 (in Russ.).
  50. Sosnovskiy L.А. Osnovy mekhaniki iznosoustalostnogo povrezhdeniya i razrusheniya [Fundamentals of mechanics of wear-fatigue damage and fracture]. Trudy 4 Mezhdunarodnogo simpoziuma po tribofatike [Proc. 4th International symposium on tribo-fatigue]. Ternopol, 2002, vol. 1, pp. 9–22 (in Russ.).
  51. Sosnovskiy L.А. O sostoyanii i budushchem razvitii tribologii [On the state and future development of tribology]. Tezisy dokladov Mezhdunarodnoy nauchno-technicheskoy konferentsii “Polikomtrib-2009” [Abstracts of papers of the International scientific and technical conference “Polikomtrib-2009”]. Gomel, 2009, p. 215 (in Russ.).
  52. Troschenko V.T., et al. Iznosoustalostnye povrezhdeniya i ikh prognozirovanie: tribofatika [Wear-fatigue damage and its prediction: tribo-fatigue]. Gomel, Kiev, Moscow, Uhan, Tribofatika Publ., 2001, 170 p. (in Russ.).
  53. Eksperimentalnaya mekhanika [Experimental mechanics]. Moscow, Mir Publ., 1990. Book 1, 616 p.; book 2, 552 p. (in Russ.).
  54. Springer handbook on experimental solid mechanics. New York, Springer, 2008. 1098 p. DOI: https://doi.org/10.1007/978-0-387-30877-7.
  55. Buketkin B.V., et al. Eksperimentalnaya mekhanika [Experimental mechanics]. Moscow, Moskovskiy gosudarstvennyy tekhnicheskiy universitet im. N.E. Baumana Publ., 2004. 136 p. (in Russ.).
  56. State Standard 30754-2001. Tribofatika. Metody iznosoustalostnykh ispytaniy. Ispytaniya na kontaktno-mekhanicheskuyu ustalost [Tribo-fatigue. Methods of wear-fatigue testing. Mechano-rolling fatigue tests]. Minsk, Mezhgosudarstvennyy sovet po standartizatsii, metrologii i sertifikatsii Publ., Belorusskiy gosudarstvennyy institut standartizatsii i sertifikatsii Publ., 2002. 32 p. (in Russ.).
  57. Standard of Belarus STB 1233-2000. Tribofatika. Metody iznosoustalostnykh ispytaniy. Uskorennye ispytaniya na kontaktno-mekhanicheskuyu ustalost [Tribo-fatigue. Wear-fatigue test methods. Accelerated mechano-rolling fatigue tests]. Minsk, Mezhgosudarstvennyy sovet po standartizatsii, metrologii i sertifikatsii Publ., Belorusskiy gosudarstvennyy institut standartizatsii i sertifikatsii Publ., 2000. 8 p. (in Russ.)
  58. Standard of Belarus STB 1448–2004. Tribofatika. Metody iznosoustalostnykh ispytaniy. Ispytaniya na friktsionno-mekhanicheskuyu ustalost [Tribo-fatigue. Wear-fatigue test methods. Mechano-sliding fatigue tests]. Minsk, Gosstandart Publ., 2004. 14 p. (in Russ.).
  59. Standard of Belarus STB 1758–2007. Tribofatika. Metod sovmeshchennykh ispytaniy na izgibnuyu i kontaktnuyu ustalost materialov zubchatykh koles [Tribo-fatigue. Method of combined tests for bending and contact fatigue of gear materials]. Minsk, Gosstandart Publ., 2007. 45 p. (in Russ.).
  60. State Standard 30755–2001. Tribofatika. Mashiny dlya iznosoustalostnykh ispytaniy. Obshchie tekhnicheskie trebovaniya [Tribo-fatigue. Wear-fatigue testing machines. General technical requirements]. Minsk, Mezhgosudarstvennyy sovet po standartizatsii, metrologii i sertifikatsii Publ., Belorusskiy gosudarstvennyy institut standartizatsii i sertifikatsii Publ., 2002. 8 p. (in Russ.).
  61. Bogdanovich А.V., et al. Tsentr dlya iznosoustalostnykh ispytaniy materialov [Center for wear-fatigue testing of materials]. Patent EA, no. 040211, 2020 (in Russ.).
  62. Basiniuk V.L., et al. Tsentr i sposob dlya provedeniya ispytaniya materialov [Center and method for testing materials]. Patent EA, no. 047463, 2023 (in Russ.).
  63. Stepankin I.N., Kenko V.M., Pankratov I.A. Ustroystvo ispytaniya materialov na kontaktnuyu ustalost i iznos [A device for testing materials for contact fatigue and wear]. Patent BY, no. 7093, 2011 (in Russ.).
  64. Korolev А.V., Korolev A.A. Mashina treniya dlya uskorennykh ispytaniy na iznos friktsionnykh tel kacheniya [Friction machine for accelerated wear tests of frictional rolling elements]. Friction and wear, 2017, vol. 38, no. 1, pp. 49–54 (in Russ.).
  65. McCook N.L., Burris D.L., Kim N.H., Sawyer W.G. Cumulative damage modeling of solid lubricant coatings that experience wear and interfacial fatigue. Wear, 2007, vol. 262, iss. 11–12, pp. 1490–1495. DOI: https://doi.org/10.1016/j.wear.2007.01.042.
  66. Martínez F.J., Canales M., Bielsa J.M., Jiménez M.A. Relationship between wear rate and mechanical fatigue in sliding TPU–metal contacts. Wear, 2010, vol. 268, iss. 3–4, pp. 388–398. DOI: https://doi.org/10.1016/j.wear.2009.08.026.
  67. Zhang J., et al. Tribo-fatigue behaviors of steel wire rope under bending fatigue with the variable tension. Wear, 2019, vol. 428–429, pp. 154–161. DOI: https://doi.org/10.1016/j.wear.2019.03.004.

Title of the article NUMERICAL ANALYSIS OF DYNAMIC PROCESSES IN MULTISPEED PLANETARY TRANSMISSIONS WITH SPLITTING AND CIRCULATING POWER FLOWS
Authors

KULIKOV Ilya A., Ph. D. in Eng., Leading Research Engineer, FSUE NAMI, Moscow, Russian Federation, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

FISENKO Igor A., Ph. D. in Eng., Leading Expert of the Expert Council, FSUE NAMI, Moscow, Russian Federation, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

GIRUZKY Olgert I., D. Sc. in Eng., Prof., FSUE NAMI, Moscow, Russian Federation

In the section DYNAMICS, DURABILITY OF VEHICLES AND STRUCTURES
Year 2025
Issue 4(73)
Pages 58–65
Type of article RAR
Index UDK 629.3
DOI https://doi.org/10.46864/1995-0470-2025-4-73-58-65
Abstract The article proposes an approach to synthesize mathematical models of multispeed planetary transmissions intended for numerical analysis of their dynamic characteristics under operating conditions that feature splitting and circulation of power flows (including gear shifting processes). The approach makes use of elements with spring-damper properties to model both epicyclic gear sets and friction clutches. The resulting system of ordinary differential equations has invariant structure and provides adequate calculation of the torques exerted in the elements of the epicyclic gears and the friction clutches across the entire operating range of the transmission. To verify the modeling approach, numerical experiments were conducted simulating operation of a production planetary transmission. The simulation results are presented showing transient operating modes with the friction clutches slipping and the power flows splitting and circulating.
Keywords multispeed planetary transmissions, mathematical modeling, transient modes, power circulation, power splitting, gear shifting, friction clutches
  You can access full text version of the article.
Bibliography
  1. Suzuki T., et al. New RWD 10 speed automatic transmission for passenger vehicles. SAE international journal of engines, 2017, vol. 10, iss. 2, pp. 695–700. DOI: https://doi.org/10.4271/2017-01-1097.
  2. Krasnevskiy L.G., Poddubko S.N. Pretsizionnoe upravlenie avtomaticheskimi transmissiyami: itogi 50 let razvitiya [Precision control of automatic transmissions: the summary of 50 years development]. Mechanics of machines, mechanisms and materials, 2015, no. 4(33), pp. 5–13 (in Russ.).
  3. Xu X., Dong P., Liu Y., Zhang H. Progress in automotive transmission technology. Automotive innovation, 2018, vol. 1, iss. 3, pp. 187–210. DOI: https://doi.org/10.1007/s42154-018-0031-y.
  4. Tarasik V.P., Puzanova O.V. Mnogoprogrammnye sistemy upravleniya GMP [Multi-program control systems for hydromechanical transmissions]. Avtomobilnaya promyshlennost, 2004, no. 1, pp. 16–20 (in Russ.).
  5. Basalaev V.N., Kovalenko A.V. Issledovanie protsessa pereklyucheniya peredach pod nagruzkoy i optimizatsiya upravleniya friktsionnymi muftami mekhanicheskoy transmissii [Investigation of the gearshift process under load and optimization controlling the friction clutches of mechanical transmission]. Mechanics of machines, mechanisms and materials, 2011, no 2(15), pp. 24–32 (in Russ.).
  6. Kim S., Oh J., Choi S. Gear shift control of a dual-clutch transmission using optimal control allocation. Mechanism and machine theory, 2017, vol. 113, pp. 109–125. DOI: https://doi.org/10.1016/j.mechmachtheory.2017.02.013.
  7. Kulikov I.A., Giruzky O.I., Fisenko I.A. Vliyanie upravleniya krutyashchim momentom na vedushchem valu avtomaticheskoy stupenchatoy transmissii na protsessy pereklyucheniya peredach [Effect of input shaft torque control during gear shifting processes in automatic stepped transmissions]. Trudy NAMI, 2022, no. 4(291), pp. 70–82. DOI: https://doi.org/10.51187/0135-3152-2022-4-70-82 (in Russ.).
  8. Tarasik V.P. Modelirovanie planetarnoy korobki peredach [Planetary gearbox simulation]. Vestnik Belorussko-Rossiyskogo universiteta, 2018, no. 3(60), pp. 36–48. DOI: https://doi.org/10.53078/20778481_2018_3_36 (in Russ.).
  9. Algin V.B. Dinamika mnogomassovykh sistem mashin pri izmenenii sostoyaniy friktsionnykh komponentov i napravleniy silovykh potokov [Dynamics of multibody systems of machines under changing states of frictional components and directions of power flows]. Mechanics of machines, mechanisms and materials, 2014, no. 4(29), pp. 21–32 (in Russ.).
  10. Crowther A., Zhang N., Liu D.K., Jeyakumaran J.K. Analysis and simulation of clutch engagement judder and stick-slip in automotive powertrain systems. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of automobile engineering, 2004, no. 218, iss. 12, pp. 1427–1446. DOI: https://doi.org/10.1243/0954407042707731.
  11. Deur J., Asgari J., Hrovat D. Modeling and analysis of automatic transmission engagement dynamics-nonlinear case including validation. Journal of dynamic systems measurement and control, 2006, no. 128, iss. 2, pp. 251–262. DOI: https://doi.org/10.1115/1.2192826.
  12. Ivanovic V., Tseng H.E. Bond graph based approach for modeling of automatic transmission dynamics. SAE international journal of engines, 2017, vol. 10, iss. 4, pp. 1999–2014. DOI: https://doi.org/10.4271/2017-01-1143.
  13. Deur J., Asgari J., Hrovat D. Modeling of an automotive planetary gear set based on Karnopp model for clutch friction. Proc. ASME 2003 international mechanical engineering congress and exposition “Dynamic systems and control”, 2003, vol. 1–2, pp. 903–910. DOI: https://doi.org/10.1115/IMECE2003-41693.
  14. Kurochkin F.F. Metod vybora ratsionalnykh kharakteristik protsessa pereklyucheniya v avtomaticheskoy korobke peredach avtomobilya. Diss. kand. tekhn. nauk [A method of finding efficient characteristics of shifting processes in automatic gearbox of automotive vehicle. Ph. D. Thesis]. Moscow, 2008. Pp. 33–37 (in Russ.).
  15. Li B., et al. Coordinated control of gear shifting process with multiple clutches for power-shift transmission. Mechanism and machine theory, 2019, vol. 140, pp. 274–291. DOI: https://doi.org/10.1016/j.mechmachtheory.2019.06.009.
  16. Sharipov V.M. Konstruirovanie i raschet traktorov [Design and calculation of tractors]. Moscow, Mashinostroenie Publ., 2004. Pp. 246–247 (in Russ.).
  17. Marques F., Flores P., Pimenta Claro J.C., Lankarani H.M. A survey and comparison of several friction force models for dynamic analysis of multibody mechanical systems. Nonlinear dynamics, 2016, vol. 86, iss. 3, pp. 1407–1443. DOI: https://doi.org/10.1007/s11071-016-2999-3.
  18. Åström K.J., Canudas-de-Wit C. Revisiting the LuGre friction model. IEEE control systems magazine, 2008, vol. 28, iss, 6, pp. 101–114. DOI: https://doi.org/10.1109/MCS.2008.929425.
  19. Nagaitcev M.V., Nagaitcev M.M., Taratorkin A.I., Kharitonov S.A. Gidromekhanicheskaya korobka peredach [Hydromechanical gearbox]. Patent WO, no. WO/2015/009185, 2015 (in Russ.).
  20. Genta G. Motor vehicle dynamics. Modeling and simulation. Singapore, World Scientific Publishing Ltd, 2006. 539 p.

Title of the article INTELLIGENT MODELS OF WEAR-FATIGUE DAMAGE AND FRACTURE MECHANICS
Authors

SHERBAKOV Sergei S., D. Sc. in Phys. and Math., Prof., Deputy Chairman of the Presidium, National Academy of Sciences of Belarus, Minsk, Republic of Belarus; Chief Researcher, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus; This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section TRIBO-FATIGUE SYSTEMS MECHANICS
Year 2025
Issue 4(73)
Pages 66–75
Type of article RAR
Index UDK 531; 004.8
DOI https://doi.org/10.46864/1995-0470-2025-4-73-66-75
Abstract Artificial intelligence technologies are considered in comparison with mathematical modeling using the examples of a number of critical purpose technical systems studied in tribo-fatigue. An applied definition of artificial intelligence as a technical automated system rather than a set of specific technologies is proposed. Tribo-fatigue methodology is presented for the consistent formulation and solution of interaction problems of a system with many bodies with previously unknown contact surfaces, determination and prediction of their three-dimensional stress-strain state, volumetric damage state and multi-criteria limiting states taking into account its simultaneous complex thermal-force loading by contact and non-contact forces. This made it possible to create multi-element digital twins of a number of technical systems of critical purpose, used to optimize these systems for damage and support management decisions. Unified approach is proposed to application of artificial neural networks and mathematical modeling in intelligent models of tribo-fatigue and mechanothermodynamic systems. Beneficial direct effect of artificial neural networks on approximation of mathematical modeling results and opposite effect of good quality data produced by mathematical modeling on artificial neural networks are shown.
Keywords tribo-fatigue, artificial intelligence, mathematical modeling, artificial neural networks, mechanothermodynamics
  You can access full text version of the article.
Bibliography
  1. Sosnovskiy L.А. О kompleksnoy оtsenke nadezhnosti silovykh sistem [On the comprehensive assessment of the reliability of active systems]. Tezisy dokladov Respublikanskoy nauchno-tekhnicheskoy konferentsii “Puti povysheniya tekhnicheskogo urovnya i nadezhnosti mashin” [Abstracts of papers of the Republican scientific and technical conference “Ways to improve the technical level and reliability of machines”]. Minsk, 1986, p. 29 (in Russ.).
  2. Sosnovskiy L.А. Nadezhnost i dolgovechnost elementov silovogo metallopolimernogo tribosopryazheniya v protsesse iznosoustalostnykh ispytaniy [Reliability and durability of elements of power metal-polymer tribocoupling in the process of wear-fatigue tests]. Nadezhnost i dolgovechnost mashin i sooruzheniy, 1986, no. 9, pp. 93–102 (in Russ.).
  3. Sosnovskiy L.А. Kompleksnaya otsenka nadezhnosti silovykh sistem po kriteriyam soprotivleniya ustalosti i iznosostoykosti (osnovy tribofatiki) [Comprehensive assessment of the reliability of active systems based on fatigue and wear resistance criteria (fundamentals of tribo-fatigue)]. Gomel, Belorusskiy institut inzhenerov zheleznodorozhnogo transporta Publ., 1988. 56 p. (in Russ.).
  4. Bogdanovich А.V. Slovo o tribofatike [A word about tribo-fatigue]. Gomel, Minsk, Moscow, Kiev, Rеmika, 1996. 132 p. (in Russ.).
  5. Sherbakov S.S. Matematicheskoe modelirovanie i vychislitelnaya mekhanika: potentsial dlya rosta naukoemkoy ekonomiki [Mathematical modeling and computational mechanics: potential for growth of knowledge-intensive economy]. Science and innovations, 2019, no. 1(191), pp. 45–53 (in Russ.).
  6. Sosnovskiy L.A. Osnovy tribofatiki [Fundamentals of tribo-fatigue]. Gomel, Belorusskiy gosudarstvennyy universitet transporta Publ., 2003. Vol. 1, 246 p.; vol. 2, 234 p. (in Russ.).
  7. Sosnovskiy L.A. Tribo-fatigue. Wear-fatigue damage and its prediction. Berlin, Springer, 2005. 424 p. DOI: https://doi.org/10.1007/978-3-540-27027-0.
  8. Sosnovskiy L.A. Mekhanika iznosoustalostnogo povrezhdeniya [Mechanics of wear-fatigue damage]. Gomel, Belorusskiy gosudarstvennyy universitet transporta Publ., 2007. 434 p. (in Russ.).
  9. Sherbakov S.S., Sosnovskiy L.A. Mekhanika tribofaticheskikh sistem [Mechanics of tribo-fatigue systems]. Minsk, Belorusskiy gosudarstvennyy universitet Publ., 2011. 407 p. (in Russ.).
  10. Sherbakov S.S., Basaran C. On the development of tribo-fatigue as the new section of mechanics. International journal of materials and structural integrity, 2021, vol. 14, no. 2–4, pp. 142–163. DOI: https://doi.org/10.1504/IJMSI.2021.10050851.
  11. Sosnovskiy L.A., Sherbakov S.S. New cast iron Monica loses its brittleness with increasing strength. International journal of materials and structural integrity, 2024, vol. 15, no. 1, pp. 24–41. DOI: https://doi.org/10.1504/IJMSI.2023.135888.
  12. Sosnovskiy L.A., Sherbakov S.S., Khonsari M.M., Bogdanovich A.V. From fatigue and tribology to tribo-fatigue. International journal of materials and structural integrity, 2021, vol. 14, no. 2–4, pp. 164–237. DOI: https://doi.org/10.1504/IJMSI.2021.125815.
  13. Zhuravkov M., Bosyakov S., Sherbakov S. Tekhnologii iskusstvennogo intellekta: sistemy kompyuternogo modelirovaniya v prikladnykh issledovaniyakh [Artificial intelligence technologies: computer modeling systems in applied research]. Science and innovations, 2023, no. 4(242), pp. 43–51 (in Russ.).
  14. Sherbakov S., et al. Prediction of threshold von-mises stress distribution of the sections of oil pipeline steel with internal corrosion defects using finite element analysis. Engineering solid mechanics, 2025, vol. 13, no. 3, pp. 299–316. DOI: https://doi.org/10.5267/j.esm.2025.2.001.
  15. Sosnovskiy L.A., Sherbakov S.S. Printsipy mekhanotermodinamiki [Principles of mechanothermodynamics]. Gomel, Belorusskiy gosudarstvennyy universitet transporta Publ., 2013. 150 p. (in Russ.).

Title of the article APPLICATION OF ACOUSTIC EMISSION PARAMETERS STATISTICAL ANALYSIS METHODS TO ASSESS THE COMPOSITE SAMPLES DAMAGE DEGREE
Authors

MATVIENKO Yuri G., D. Sc. in Eng., Prof., Head of the Department, Mechanical Engineering Research Institute of the Russian Academy of Sciences, Moscow, Russian Federation, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

BALANDIN Timofey D., Junior Researcher, Mechanical Engineering Research Institute of the Russian Academy of Sciences, Moscow, Russian Federation, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

CHERNOV Dmitry V., Ph. D. in Eng., Assoc. Prof., Senior Researcher, Mechanical Engineering Research Institute of the Russian Academy of Sciences, Moscow, Russian Federation, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section DYNAMICS, DURABILITY OF VEHICLES AND STRUCTURES
Year 2025
Issue 4(73)
Pages 52–57
Type of article RAR
Index UDK 620.179.17
DOI https://doi.org/10.46864/1995-0470-2025-4-73-52-57
Abstract The work is devoted to the study of damage accumulation kinetics in products made of polymer composite materials using the acoustic emission (AE) method. To solve the problem, an algorithm for processing streaming AE parameters is proposed, based on the combined use of statistical processing methods for experimental data and regression analysis models. The values of high-level quantiles p = 0.9 of the empirical functions of the leading edge energy distribution [Eφ]p=0.9 and the average frequency of emissions [Ni/ti]p=0.9 of AE pulses were selected as the most informative parameters used in assessing the degree of damage to composite samples. The calculation of the empirical distribution functions for the selected AE parameters was carried out using the window function method. The implementation of the proposed algorithm consists in calculating the weight content of the streaming AE parameters in segments I, II and III of the criterial plane [Eφ]p=0.9 – [Ni/ti]p=0.9, formed at the stages of scattered crack formation in the matrix (I), local fiber failure (II) and intensive damage accumulation in the stress concentration zone (III) of the composite sample. Based on the dynamics of change in the weight content of the streaming parameters in segment I (WI), a regression model was synthesized that allows estimating the degree of damage to the monitored products based on the AE monitoring results. A fractional rational function of the first order was used as a regression model, the coefficients of which were calculated using the least squares method. The maximum value of the reduced error for the proposed empirical model for the studied composite material did not exceed γ = 3.6 %, and the high degree of correlation between the model and experimental data is confirmed by the value of the correlation coefficient R2 = 0.94.
Keywords acoustic emission, degree of damage, composite materials, statistical analysis, regression model
  You can access full text version of the article.
Bibliography
  1. Deo R.B., Starnes J.H., Holzwarth R.C. Low-cost composite materials and structures for aircraft applications. Proc. RTO AVT specialists’ meeting on “Low cost composite structures”. Loen, 2001.
  2. Wu Y. Application of carbon fiber composite materials in aircraft. Applied and computational engineering, 2024, vol. 61, pp. 245–248. DOI: https://doi.org/10.54254/2755-2721/61/20240969.
  3. Smith R.A. Composite defects and their detection. Encyclopedia of life support systems. Materials science and engineering, 2009, vol. 3, pp. 103–143.
  4. Ivanov V.I., Barat V.A. Akustiko-emissionnaya diagnostika [Acoustic emission diagnostics]. Moscow, Spektr Publ., 2017. 362 p. (in Russ.).
  5. Urbaha M., Stefański K., Banov M., Shestakov V. Application of acoustic emission method for the evaluation of the micromechanics of destruction of fiberglass materials under static load. Aviation, 2020, vol. 24, no. 4, pp. 169–176. DOI: https://doi.org/10.3846/aviation.2020.12661.
  6. Stepanova L.N., Chernova V.V. Issledovanie protsessa razrusheniya obraztsov iz kompozitsionnykh materialov metodom akusticheskoy emissii [Investigation of the destruction process of composite material samples using the acoustic emission method]. Izvestiya vysshikh uchebnykh zavedeniy. Stroitelstvo, 2014, no. 3(663), pp. 118–124 (in Russ.).
  7. Ghadarah N.S., Ayre D. A review on acoustic emission testing for structural health monitoring of polymer-based composites. Sensors, 2023. vol. 23, iss. 15. DOI: https://doi.org/10.3390/s23156945.
  8. Makhutov N.A., et al. Rupture tests of reinforcing fibers and a unidirectional laminate using acoustic emissions. Instruments and experimental techniques, 2022, vol. 65, iss. 2, pp. 305–313. DOI: https://doi.org/10.1134/S0020441222020014.
  9. Saeedifar M., et al. Acoustic emission-based methodology to evaluate delamination crack growth under quasi-static and fatigue loading conditions. Journal of nondestructive evaluation, 2018, vol. 37, iss. 1. DOI: https://doi.org/10.1007/s10921-017-0454-0.
  10. Du J., et al. Acoustic emission monitoring for damage diagnosis in composite laminates based on deep learning with attention mechanism. Mechanical systems and signal processing, 2025, vol. 222. DOI: https://doi.org/10.1016/j.ymssp.2024.111770.
  11. Gee M., Roshanmanesh S., Hayati F., Papaelias M. Multi-variant damage assessment in composite materials using acoustic emission. Sensors, 2025, vol. 25, iss. 12. DOI: https://doi.org/10.3390/s25123795.
  12. Du J., et al. Time-frequency analysis of acoustic emission signals in composite materials under repeated impact conditions. Polymer composites, 2025, vol. 46, iss. 13, pp. 12407–12420. DOI: https://doi.org/10.1002/pc.29752.
  13. Saeedifar M., et al. Clustering of interlaminar and intralaminar damages in laminated composites under indentation loading using Acoustic Emission. Composites Part B: Engineering, 2018, vol. 144, pp. 206–219. DOI: https://doi.org/10.1016/j.compositesb.2018.02.028.
  14. Pan Z., et al. Flexural damage and failure behavior of 3D printed continuous fiber composites by complementary nondestructive testing technology. Polymer composites, 2022, vol. 43, iss. 5, pp. 2864–2877. DOI: https://doi.org/10.1002/pc.26582.
  15. Li W., Cheng J., Jiang P., Liu Y. Klasternyy analiz dannykh akusticheskoy emissii sloistykh kompozitnykh materialov s razlichnoy orientatsiey mezhfaznykh volokon na osnove modeli gaussovoy smesi [Acoustic emission cluster analysis of composite laminates with different interfacial fiber orientations based on gaussian mixture model]. Russian journal of nondestructive testing, 2023, no. 3, pp. 14–30. DOI: https://doi.org/10.31857/S0130308223030028 (in Russ.).