Title of the article

MODERN TRENDS AND SOLUTIONS TO ENSURE COMPETITIVENESS OF MINING VEHICLES OF BELAZ PRODUCTION

Authors

PARKHOMCHIK Petr A., Director General, OJSC “BELAZ” — Management Company of Holding “BELAZ-HOLDING”, Zhodino, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.

VITYAZ Petr A., D. Sc. in Eng., Academician of NAS of Belarus, Head of the Apparatus of the NAS of Belarus, Presidium of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.

EGOROV Alexander N., General Design Engineer — Chief of Scientific and Technical Center, OJSC “BELAZ” — Management Company of Holding “BELAZ-HOLDING”, Zhodino, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.

SHISHKO Sergey A., Deputy General Design Engineer, OJSC “BELAZ” — Management Company of Holding “BELAZ-HOLDING”, Zhodino, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.

NASKOVETS Alexander M., Head of Design Bureau for Configuration, OJSC “BELAZ” — Management Company of Holding “BELAZ-HOLDING”, Zhodino, Republic of Belarus

MOISEENKO Vladimir I., D. Sc. in Eng., Prof., Chief Researcher of the Laboratory of Reliability Problems and Metal Intensity of High- and Extra-High Capacity Dump Trucks, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus

In the section TECHNICAL INFORMATION
Year 2019 Issue 1 Pages 93–100
Type of article RAR Index UDK 621.398 Index BBK  
Abstract

Modern trends to ensure competitiveness of mining vehicles produced by OJSC “BELAZ” — Management Company of Holding “BELAZ-HOLDING” are analyzed. The development strategy of the enterprise is defined with a  steady growth of demand for mining equipment in the world. The main directions of development of OJSC  BELAZ are determined, and the line of the updated and new types of products is also shown.

Keywords

mining vehicles, mining equipment, hydromechanical transmissions (HMT), automatic planetary gearboxes (PGB), unmanned vehicles

   
Bibliography
  1. Mariev P.L. Povyshenie konstruktsionnoy ravnoprochnosti krupnogabaritnykh detaley i svarnykh uzlov karernykh samosvalov [Improving the structural equal strength of large-sized parts and welded assemblies of mining trucks]. Minsk, Institut tekhnicheskoy kibernetiki NAN Belarusi Publ., 2001. 180 p.
  2. Moiseenko V.I., Shkatulo N.D. Konstruktsionnaya legirovannaya stal [Structural alloy steel]. Patent RB, no. 16513, 2012.
  3. Moiseenko V.I., Sapunov A.L., Shkatulo N.D. Azotiruemaya stal dlya zubchatykh koles [Nitrided steel for gears]. Patent RF, no. 2553764, 2015.

Title of the article

MODELING ELASTO-PLASTIC BEHAVIOR OF SPACE-REINFORCED FLEXIBLE CURVED PANELS TAKING INTO ACCOUNT POSSIBLE WEAKENED RESISTANCE TO TRANSVERSE SHEARS

Authors

YANKOVSKII Andrei P., D. Sc. in Phys. and Math., Leading Researcher of the Laboratory of Fast Processes Physics, Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Science, Novosibirsk, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section MECHANICS OF DEFORMED SOLIDS
Year 2019 Issue 1 Pages 82–92
Type of article RAR Index UDK 539.4 Index BBK  
Abstract

A mathematical model of elastic-plastic behavior of flexible curved panels with spatial reinforcement structures is  developed. The inelastic deformation of the composition components is described by the theory of plastic flow with isotropic hardening. The possible weakened resistance of composite panels to transverse shears is taken into account in the framework of the non-classical Reddy theory, and the geometric nonlinearity is considered in the  Karman approximation. The solution of the formulated initial-boundary value problem is obtained by an explicit numerical “cross” scheme. The bending inelastic behavior of “flat”- and spatially-reinforced cylindrical panels under the action of dynamic loads of explosive type is investigated. The glass-plastic and metal-composite structures are considered. It is shown that for relatively thick glass-plastic panels (and in some cases for relatively thin ones), the replacement of the flat-cross structure of the reinforcement with the spatial structure leads to a decrease in the deflection of the composite structure by several tens of percent. In cases of metal-composite panels, such replacement of reinforcement structures practically does not lead to a decrease in their flexibility in the transverse direction.

Keywords

curved panels, spatial reinforcement, Reddy theory, geometric nonlinearity, elastic-plastic deformation, explosive load, “cross” scheme

   
Bibliography
  1. Zhigun I.G., Dushin M.I., Polyakov V.A., Yakushin V.A. Kompozitsonnye materialy, armirovannye sistemoy pryamykh vzaimno ortogonalnykh volokon. 2. Eksperimentalnoe izuchenie [Composite materials reinforced with a system of straight mutually orthogonal fibers. 2. Experimental study]. Mekhanika polimerov [Mechanics of polymers], 1973, no. 6, pp. 1011–1018.
  2. Tarnopolskiy Yu.M., Zhigun I.G., Polyakov V.A. Prostranstvenno-armirovannye kompozitsionnye materialy: spravochnik [Spatially reinforced composite materials: handbook]. Moscow, Mashinostroenie Publ., 1987. 224 p.
  3. Mohamed M.H., Bogdanovich A.E., Dickinson L.C., Singletary J.N., Lienhart R.R. A new generation of 3D woven fabric performs and composites. SAMPE Journal, 2001, vol. 37, no.   3, pp. 3–17.
  4. Schuster J., Heider D., Sharp K., Glowania M. Measuring and modeling the thermal conductivities of three-dimensionally woven fabric composites. Mechanics of Composite Materials, 2009, vol. 45, no. 2, pp. 241–254.
  5. Tarnopolskiy Yu.M., Zhigun I.G., Polyakov V.A. Kompozitsionnye materialy, armirovannye sistemoy pryamykh vzaimno ortogonalnykh volokon. 1. Raschet uprugikh kharakteristik [Composite materials reinforced with a system of straight mutually orthogonal fibers. 1. Calculation of elastic characteristics]. Mekhanika polimerov [Mechanics of polymers], 1973, no. 5, pp. 853–860.
  6. Kregers A.F., Teters G.A. Strukturnaya model deformirovaniya anizotropnykh, prostranstvenno armirovannykh kompozitov [Structural model of deformation of anisotropic, spatially reinforced composites]. Mekhanika kompozitnykh materialov [Mechanics of composite materials], 1982, no. 1, pp. 14–22.
  7. Yankovskii A.P. Determination of the thermoelastic characteristics of spatially reinforced fibrous media in the case of general anisotropy of their components. 1. Structural model. Mechanics of Composite materials, 2010, vol. 46, no. 5, pp. 451–460.
  8. Yankovskii A.P. Applying the Explicit Time Central Difference Method for Numerical Simulation of the Dynamic Behavior of Elastoplastic Flexible Reinforced Plates. Journal of Mechanics and Technical Physics, 2017, vol. 58, no. 7, pp. 1223–1241.
  9. Bogdanovich A.E. Nelineynye zadachi dinamiki tsilindricheskikh kompozitnykh obolochek [Nonlinear problems of the dynamics of cylindrical composite shells]. Riga, Zinatne Publ., 1987. 295 p.
  10. Malmeister A.K., Tamuzh V.P., Teters G.A. Soprotivlenie zhestkikh polimernykh materialov [Resistance of rigid polymer materials]. Riga, Zinatne Publ., 1972. 500 p.
  11. Abrosimov N.A., Bazhenov V.G. Nelineynye zadachi dinamiki kompozitnykh konstruktsiy [Nonlinear problems of dynamics composite designs]. Nizhniy Novgorod, Nizhegorodskiy gosudarstvenyy universitet Publ., 2002. 400 p.
  12. Reddy J.N. Mechanics of laminated composite plates and shells: Theory and analysis. 2nd ed. Boca Raton, CRC Press, 2004. 858 p.
  13. Kaledin V.O., Aulchenko S.M., Mitkevich A.B., Reshetnikova  E.V., Sedova E.A., Shpakova Yu.V. Modelirovanie statiki i  dinamiki obolochechnykh konstruktsiy iz kompozitsionnykh materialov [Modeling of statics and dynamics of shelled designs from composite materials]. Moscow, Fizmatlit Publ., 2014. 196 p.
  14. Yankovskii A.P. Modelirovanie dinamicheskogo uprugoplasticheskogo povedeniya gibkikh armirovannykh pologikh obolochek [Modeling of dynamic elastic-plastic behavior of flexible reinforced shallow shells]. Konstruktsii iz kompozitsion-
    nykh materialov
    [Designs from composite materials], 2018, no. 2, pp. 3–14.
  15. Yankovskii A.P. Modelirovanie osesimmetrichnogo uprugoplasticheskogo deformirovaniya tsilindricheskikh voloknistykh obolochek [Modeling of axisymmetric elastoplastic deformation of cylindrical fibrous shells]. Mekhanika mashin, mekhanizmov i materialov [Mechanics of machines, mechanisms and materials], 2018, no. 2(43), pp. 68–76.
  16. Bosiakov S.M., Zhiwei W. Analiz svobodnykh kolebaniy tsilindricheskoy obolochki iz stekloplastika pri granichnykh usloviyakh Nave [Free vibration analysis of cylindrical shell from fiberglass with Navier boundary conditions]. Mekhanika mashin, mekhanizmov i materialov [Mechanics of machines, mechanisms and materials], 2011, no. 3(16), pp. 24–27.
  17. Ghulghazaryan G.R., Ghulghazaryan R.G. O svobodnykh interfeysnykh kolebaniyakh tonkikh uprugikh krugovykh tsilindricheskikh obolochek [About free interfacial vibrations of thin elastic circular cylindrical shells]. Mekhanika mashin, mekhanizmov i materialov [Mechanics of machines, mechanisms and materials], 2013, no. 4(25), pp. 12–19.
  18. Marchuk M.V., Tuchapskyy R.I., Pakosh V.S. Issledovanie deformirovaniya gibkikh dlinnykh pologikh nekrugovykh tsilindricheskikh paneley s zashchemlennymi prodolnymi krayami na osnove utochnennoy teorii [Study of deformation of flexible long shallow noncircular cylindrical panels with clamped longitudinal edges by refined theory]. Mekhanika mashin, mekhanizmov i materialov [Mechanics of machines, mechanisms and materials], 2015, no. 4(33), pp. 59–69.
  19. Agalarova I.Y. Kolebaniya podkreplennykh perekrestnymi sistemami reber anizotropnykh tsilindricheskikh obolochek s  zapolnitelem pri osevom szhatii i s uchetom treniya [Oscillations of anisotropic cylindrical shells with filler supported with cross ribs system, under axial compression and given friction]. Mekhanika mashin, mekhanizmov i materialov [Mechanics of machines, mechanisms and materials], 2017, no. 1(38), pp. 57–63.
  20. Leonenko D.V., Zelenaya A.S. Napryazhenno-deformirovannoe sostoyanie fizicheski nelineynoy trekhsloynoy pryamougolnoy plastiny so szhimaemym zapolnitelem [Stress-strain state of a physically non-linear three-layer rectangular plate with a  compressed filler]. Mekhanika mashin, mekhanizmov i materialov [Mechanics of machines, mechanisms and materials], 2018, no. 2(43), pp. 77–82.
  21. Reissner E. On transverse vibrations of thin shallow elastic shells. Quarterly of Applied Mathematics, 1955, vol. 13, no. 2, pp. 169–176.
  22. Ivanov G.V., Volchkov Yu.M., Bogulskiy I.O., Anisimov  S.A., Kurguzov V.D. Chislennoe reshenie dinamicheskikh zadach uprugoplasticheskogo deformirovaniya tverdykh tel [The numerical solution of dynamic problems of elastic-plastic deformation of solids]. Novosibirsk, Sibirskiy universitet Publ., 2002. 352 p.
  23. Houlston R., DesRochers C.G. Nonlinear structural response of ship panels subjected to air blast loading. Computers & Structures, 1987, vol. 26, no. 1/2, pp. 1–15.
  24. Kompozitsionnye materialy. Spravochnik [Composite materials. Reference book]. Kiev, Naukova dumka Publ., 1985. 592 p.
  25. Handbook of composites. New York, Van Nostrand Reinhold Company Inc., 1982. 786 p.
  26. Nemirovskii Yu.V., Romanova T.P. Dynamic plastic deformation of curvilinear plates. International Applied Mechanics, 2001, vol. 37, no. 12, pp. 1568–1578.

Title of the article

LAW OF FRICTION: FROM TRIBOLOGY TO TRIBO-FATIGUE. REPORT 1. CLASSICAL LAW OF (DRY) FRICTION AND NEED FOR ITS ADJUSTMENT

Authors

SOSNOVSKIY Leonid A., D. Sc. in Eng., Prof., Director, S&P GROUP TRIBOFATIGUE Ltd., Gomel, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section TRIBO-FATIGUE SYSTEMS MECHANICS
Year 2019 Issue 1 Pages 64–76
Type of article RAR Index UDK 620.178.16; 620.178.3 Index BBK  
Abstract

To date, many laws of Nature have been discovered. The knowledge of each of them led to the accelerated development of the relevant sections of Science and further, as a rule, to progress in any practical area of the  community of  people. The  empirical law of dry friction [1, 2], first formulated by Leonardo da Vinci 500 years ago, went down in  history of  technology as one of the most applicable laws in engineering calculations [3]. Moreover, our worldview is  unthinkable without an understanding of the general processes of movement with friction (as  well as movement without friction). All  this gives grounds to say: “Friction is an amazing phenomenon of nature” (D. Garkunov). Two hundred years later (after da Vinci) Amonton G., Coulomb C.A., and Euler L. [4–7] made a  decisive contribution to  the substantiation and understanding of the law of dry friction, and it became classical: the force of  sliding friction is proportional to  the  contact load. Studies show that the classical friction law for the tribo-fatigue system is  inaccurate and, therefore, inapplicable. It  was established experimentally that the error in estimating the  coefficient of friction in a tribo-fatigue system (for example, a  “wheel – rail” type, etc.) reaches 60...70  % or  more, if we use the classical law of friction for its analysis. Therefore, there is a problem of adjusting the classical law of friction. A set of  theoretical and experimental studies was carried out, the results of which make it possible to formulate a  generalized law of friction: the friction force is  proportional to both contact and non-contact volume loads, if  the  latter excites a  cyclic stress (strain) field in  the friction zone. This law describes all the experimental results (more than 100 values of  the friction coefficient) with an error of no more than ±6  %. The widespread use of the proposed generalized law of  friction in  the engineering is  considered as a very urgent task. In conclusion of the article, some directions for  further research (theoretical and  experimental) are formulated. The article is published in three reports.

Keywords

friction law, tribology, friction pair, tribo-fatigue, tribo-fatigue system, friction force and coefficient, sliding, rolling, slipping, contact load, pressure, non-contact (volume) load, stress, strain

   
Bibliography
  1. Fizicheskiy entsiklopedicheskiy slovar [Physical encyclopaedic dictionary]. Moskow, Bolshaya sovetskaya entsiklopediya Publ., 1983. 928 p.
  2. Encyclopedia of Tribology: in 6 vol. Springer, 2013. 4139 p.
  3. Zhuravlev V.F. 500 let istorii zakona sukhogo treniya [500  years of history of the law of dry friction]. Vestnik MGTU im.   N.E. Baumana. Seriya “Estestvennye nauki” [Herald of  the  Bauman Moscow State Technical University. Series Natural Sciences], 2014, no. 2, pp. 21–31.
  4. Leonardo da Vinchi. Izbrannye estestvenno-nauchnye proizvedeniya [Leonardo da Vinci. Selected natural-scientific works]. Moscow, AN SSSR Publ., 1955. 1028 p.
  5. Amontons M. De la résistance causee dans les machines. Histoire de L’Academie Royale des Sciences, 1699, pp. 206–222.
  6. Euler L. Sur la diminution de la résistance du frottement. Histoire de L’Academie Royale des Sciences et Belles Lettres, 1748, vol. 4, pp. 133–148.
  7. Coulomb C.A. Theorie des machines simples, en ayant égard au frottement de leurs parties, et a la roideur des Cordages. Mémoires de mathématique et de physique, présentés a  l'Académie Royale des Sciences, par divers Savans, et lus dans ses Assemblées, 1785, vol. 10, pp. 161–332.
  8. Blau P.J. Friction science and technology: from concepts to  applications. London, New York, CRC Press, 2009. 420 p.
  9. Kragelskiy I.V., Shchedrov V.S. Razvitie nauki o trenii [Friction science development]. Moscow, AN SSSR Publ., 1958. 234 p.
  10. Dowson D. History of Tribology. London, New York, Longman, 1979. 677 p.
  11. Buyanovskiy I.A., Fuks I.G., Shabalina T.P. Granichnaya smazka: etapy razvitiya tribologii [Boundary lubrication: stages of  tribology development]. Moscow, Neft i gaz Publ., 2002. 230 p.
  12. Morin A. Nouvelles Expériences sur le Frottement Faites á Metz en 1831. Mémoires Présentés par Divers Savans á  l'Académie des Sciences, 1833, vol. 4., pp. 1–128.
  13. Zhukovskiy N.E. Trenie bandazhey zheleznodorozhnykh koles o relsy [The friction of the railway wheels tires on rails]. Sobranie sochineniy: v 16 tomakh [Collected works: in 16  volumes], 1950, vol. 7, pp. 426–478.
  14. Rubenstein С. General theory of the surface friction of solids. Proc. Physical Society, 1956, vol. 69, no. 9, pp. 921–932.
  15. Ling F.F., Saibel E. On kinetic friction between unlubricated metallic surfaces. Wear, 1957, vol. 1, no. 3, pp. 167–172.
  16. Rubenstein С. The coefficient of friction of metals. Wear, 1958, vol. 2, no. 2, pp. 85–96.
  17. Dahl P.R. A solid friction model. The Aerospace Corporation. Technical report TOR-0158(3107-18)-1, 1968. 31 p.
  18. Dahl, P.R. Measurement of solid friction parameters of ball bearings. The Aerospace Corporation. Interim report TR-0077(2901-03)-3,1977. 25 p.
  19. Dowson D. History of tribology. New York, Longman, 1979. 677 p.
  20. Ishlinskiy A.Yu. Mekhanika: idei, zadachi, prilozheniya [Mechanics: ideas, tasks, applications]. Moscow, Nauka Publ., 1985. 624 p.
  21. Alexeyev N.М. On the motion of material in the border layer in  solid state friction. Wear, 1990, vol. 139, pp. 33–48.
  22. Haessig Jr. D.A., Friedland B. On the modeling and simulation of  friction. Journal of Dynamic Systems, Measurement and  Control, Transactions of the ASME, 1991, no. 113(3), pp. 354–362.
  23. Gafvert M. Comparisons of two dynamic friction models. Proc. 1997 IEEE International Conference on Control Applications, Hartford, CT, 1997, pp. 386–391.
  24. Brushan В. Principles and applications of tribology. New York, Willey, 1999. 390 p.
  25. Swevers J., et al. An integrated friction model structure with improved presliding behavior for accurate friction compensation. IEEE Transactions on Automatic Control, 2000, no. 45(4), pp. 675–686.
  26. Lampaert V., Swevers J., Al-Bender F. Modification of the  leuven integrated friction model structure. IEEE Transactions on  Automatic Control, 2002, no. 47(4), pp. 683–687.
  27. Al-Bender F., Lampaert V., Swevers J. A novel generic model at  asperity level for dry friction force dynamics. Tribology Letters, 2004, no. 16(1–2), pp. 81–94.
  28. Jianping G., et al. Frictional forces and Amonton's law: from the molecular to the macroscopic scale. The Journal of Physical Chemistry, 2004, vol. 108, pp. 3410–3425.
  29. Al-Bender F. On the definition and laws of friction. Proc. World Tribology Congress III, Washington, 2005.
  30. Merzlyakov A.A. O vneshnem trenii i zakone treniya [On  external friction and the law of friction]. Omskiy nauchnyy vestnik [Omsk scientific herald], 2006, no. 4(38), pp. 77–81.
  31. Persson B. N. J., et  al. On the origin of Amonton's friction law. Journal of Physics: Condensed Matter, 2008, vol. 20, no. 39, pp. 395006–395017.
  32. Zhuravlev V.F., Klimov D.M. O mekhanizme yavleniya shimmi [The causes of the shimmy phenomenon]. Doklady RAN [Reports of the Russian Academy of Sciences], 2009, vol. 428, no. 6, pp. 761–764.
  33. Popova E., Popov V. On the origin of Amonton's friction law. Friction, 2015, vol. 3, no. 2, pp. 183–190.
  34. Johnson K.L. Contact Mechanics. Cambridge, Cambridge University Press, 1987. 452 p.
  35. Sherbakov S.S., Sosnovskiy L.A. Mekhanika tribofaticheskikh sistem [Mechanics of tribo-fatigue systems]. Minsk, Belorusskiy gosudarstvennyy universitet Publ., 2011. 407 p.
  36. Sosnovskiy L.A. Osnovy tribofatiki: uchebnoe posobie [Fundamentals of tribo-fatigue: guide]. Gomel, Belorusskiy gosudarstvennyy universitet transporta Publ., 2003, vol. 1, 246  p., vol. 2, 234 p.
  37. Sosnovskiy L.A. Mekhanika iznosoustalostnogo povrezhdeniya [Mechanics of wear-fatigue damage]. Gomel, Belorusskiy gosudarstvennyy universitet transporta Publ., 2007. 434 p.
  38. Sosnovskiy L.A., Zhuravkov M.A., Sherbakov S.S. Fundamentalnye i prikladnye zadachi tribofatiki: kurs lektsiy [Fundamental and  applied problems of tribo-fatigue: course of lectures]. Minsk, Belorusskiy gosudarstvennyy universitet Publ., 2011. 488 p.
  39. Trenie. Koeffitsienty treniya. Tribotekhnika — nauka o trenii [Friction. Coefficient of friction. Triboengineering — science of friction]. Available at: https://dpva.ru/Guide/GuidePhysics/Frication/ (accessed 16 September 2018).
  40. Bufeev V.A. Yavlenie vozdeystviya prostranstvennoy sistemy aktivnykh sil na protsess treniya (yavlenie superkulonova, ili  nadkulonova vneshnego treniya) [Action of three-dimensional system of active forces on friction (phenomenon of supercoulomb external friction)]. Trenie i iznos [Friction and  wear], 1996, no. 1, pp. 50–57.
  41. Bufeev V.A O mekhanofriktsionnom effekte i sile vneshnego treniya [The mechanofrictional effect and the force of external friction]. Trenie i iznos [Friction and wear], 2000, vol. 21, no. 5, pp. 474–480.
  42. Markov D.P. Tribologiya i ee primenenie na zheleznodorozhnom transporte [Tribology and its application in railway transport]. Moscow, Intekst Publ., 2007. 408 p.
  43. State Standard 30638–99. Tribofatika. Terminy i  opredeleniya [Tribo-fatigue. Terms and definitions]. Minsk, Mezhgosudarstvennyy sovet po standartizatsii, metrologii i  sertifikatsii Publ., Belorusskiy gosudarstvennyy institut standartizatsii i sertifikatsii Publ., 1999. 17 p.
  44. Trybafatyka [Tribo-fatigue]. Belaruskaya entsyklapedyya [Belarusian encyclopedia], 2002, vol. 15, 542 p.

Title of the article

ABOUT CALCULATION AND EXPERIMENTAL ESTIMATION OF WORKING CAPACITY OF BALL JOINTS OF A VEHICLE CHASSIS. PART 1. CALCULATION BY SRENGTH CRITERION

Authors

BOGDANOVICH Alexander V., D. Sc. in Eng., Assoc. Prof., Professor of the Department of Theoretical and Applied Mechanics, Belarusian State University, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section TRIBO-FATIGUE SYSTEMS MECHANICS
Year 2019 Issue 1 Pages 77–81
Type of article RAR Index UDK 620.178 Index BBK  
Abstract

The ball joints of vehicles are referred to the steering and suspension critical units. Strength calculation of the ball pin under static loading is usually performed in the practice of designing these units. In the article, the ball joint is considered as a tribo-fatigue system in which the zones that are dangerous in terms of bending stresses and wear are separated from each other, but are caused by the same load. The necessity of estimating the fatigue resistance of the  ball pin and taking into account the uneven distribution of wear over the mating surfaces of the ball head and the  liner is shown. The work is done in 2 parts. In the first part, the evaluation of the static and fatigue strength of the  ball pin is discussed, and in the second, the assessment of the wear resistance of the joint elements and the  proposal for a new method for testing the joint model are discussed.

Keywords

ball joint, strength, wear resistance, friction, contact pressure, wear rate, tribo-fatigue system,
wear-and-fatigue tests

   
Bibliography
  1. Mikhaylovskiy I.A., Gun I.G., Salnikov V.V., Kutsepednik  V.I., Gun E.I. Raschetnoe opredelenie pokazateley prochnosti sharovykh sharnirov elementov shassi avtomobilya putem modelirovaniya protsessa staticheskikh ispytaniy [Estimated determination of the strength indicators of ball joints of the  vehicle chassis elements by simulating a static test process]. Issledovaniya, konstruktsii, tekhnologii [Research, constructions, technologies], 2014, no 2. pp. 20–24.
  2. Reimpel J. Fahrwerktechnik: Lenkung. Würzburg, Vogel Communications Group GmbH & Co. KG, 1985. 296 p.
  3. Chernova G.A., Tyshkevich V.N., Badikov K.A., Moiseev  Yu.I., Zabolotnyy R.V. Otsenka rabotosposobnosti sharovogo paltsa avtobusa “Volzhanin-32901” s raschetom na ustalostnuyu prochnost [Estimation of operation capability of the ball pin of  the “Volzhanin-32901” bus with relation to fatigue strength]. Problemy mashinostroeniya i nadezhnosti mashin [Problems of  mechanical engineering and machine reliability], 2014, no  4.   pp. 50–54.
  4. Afanasev B.A., et al. Proektirovanie polnoprivodnykh kolesnykh mashin. Tom 3 [Design of four-wheel drive machines. Volume  3]. Moscow, Moskovskiy gosudarstvennyy tekhnicheskiy universitet im. N.E. Baumana Publ., 2008. 432 p.
  5. State Standard 25.504-82. Raschety i ispytaniya na prochnost. Metody rascheta kharakteristik soprotivleniya ustalosti [Calculations and strength tests. Methods for calculating fatigue resistance characteristics]. Moscow. Mezhgosudarstvennyy sovet po standartizatsii, metrologii i sertifikatsii Publ., 1982. 122 p.
  6. Reshetov D.N., Ivanov A.S., Fadeev V.Z. Nadezhnost mashin: uchebnoe posobie dlya vuzov [Machine reliability: textbook for universities]. Moscow, Vysshaya shkola Publ., 1988. 237 p.
  7. Troshchenko V.T., Sosnovskiy L.A. Soprotivlenie ustalosti metallov i splavov: spravochnoe posobie v 2 t. [Resistance to fatigue of metals and alloys: reference book in 2 volumes]. Kiev, Naukova dumka Publ., 1987, vol. 1, 510 p., vol. 2, 825 p.

Title of the article

RESISTANCE TO CONTACT FATIGUE OF COARSE-GRAINED GEARS OF CHROMIUM-NICKEL STEELS

Authors

RUDENKO Sergei P., Ph. D. in Eng., Leading Researcher, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it..">This email address is being protected from spambots. You need JavaScript enabled to view it..

VALKO Aleksandr L., Senior Researcher, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

SHYSHKO Sergei A., Deputy General Designer, OJSC “BELAZ” — Management Company of Holding “BELAZ-HOLDING”, Zhodino, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

KARPOVICH Peter G., Head of the Design Office, OJSC “BELAZ” — Management Company of Holding “BELAZ-HOLDING”, Zhodino, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.

In the section MATERIALS SCIENCE IN MECHANICAL ENGINEERING
Year 2019 Issue 1 Pages 58–63
Type of article RAR Index UDK 621.833 Index BBK  
Abstract

The results of complex studies of coarse-grained gears made of carburized chromium-nickel steel 20Kh2N4A are presented. It is shown that with the stable operation of thermal equipment fitted with computer-aided systems for automatic control of the parameters of the technological process of chemical heat treatment in coarse-grained gears of steel 20Kh2N4A, a diffusion layer is formed with a surface hardness of 60–61 HRC and an effective thickness (0.08–0.1)m to a microhardness of 750 HV0.2. It is found that the increased kinematic error after chemical heat treatment of gears made of steel 20Kh2N4A leads to uneven removal of the allowance at the final grinding of the teeth, which is the reason for reducing the resistance of contact fatigue in the local area of the diffusion layers of the teeth.

Keywords

coarse-grained gear wheels, chromium-nickel steel, chemical heat treatment, kinematic error, resistance to contact fatigue

   
Bibliography
  1. Susin A.A. Khimiko-termicheskoe uprochnenie vysokonapryazhennykh detaley [Chemical heat reinforcement of heavily stressed components]. Minsk, Belorusskaya nauka Publ., 1999. 175 p.
  2. Tesker E.I. Sovremennye metody rascheta i povysheniya nesushchey sposobnosti poverkhnostno-uprochnennykh zubchatykh peredach transmissiy i privodov [Modern methods of calculation and increase of carrying capacity of the strengthened toothed gearings of transmissions and drive gears]. Moscow, Mashinostroenie Publ., 2011. 434 p.
  3. Rudenko S.P., Valko A.L. Kontaktnaya ustalost zubchatykh koles transmissiy energonasyshchennykh mashin [Contact fatigue of transmissions gearwheels of high-energy machines]. Minsk, Belaruskaya navuka Publ., 2014. 126 p.
  4. Rudenko S.P., Valko A.L., Mosunov T.I. Struktura tsementovannykh sloev zubchatykh koles transmissiy energonasyshchennykh mashin [The structure of carburized layers of transmissions gears of power-saturated machines]. Metallovedenie i termicheskaya obrabotka metallov [Metallurgical science and heat treatment of steels], 2012, no. 4, pp. 38–42.
  5. Rudenko S.P., Valko A.L. Soprotivlenie kontaktnoy ustalosti tsementovannykh zubchatykh koles iz khromonikelevykh staley [Resistance of contact fatigue of carburized gears from chromium-nickel steels]. Metallovedenie i termicheskaya obrabotka metallov [Metallurgical science and heat treatment of steels], 2017, no. 1, pp. 58–62.
  6. Rudenko S.P., Shipko A.A., Valko A.L., Kuzmenkov O.V. Proektirovanie vysokoeffektivnykh tekhnologicheskikh protsessov khimiko-termicheskoy obrabotki zubchatykh koles transmissiy energonasyshchennykh mashin [Designing of highly effective technological processes of chemical heat treatment of the vehicles transmission gears]. Mekhanika mashin, mekhanizmov i materialov [Mechanics of machines, mechanisms and materials], 2011, no. 2, pp. 67–70.
  7. Rudenko S.P., Valko A.L. Opredelenie parametrov khimiko-termicheskoy obrabotki vysokonapryazhennykh zubchatykh koles na osnove raschetnykh modeley [Definition of parameters of chemical and heat treatment for high-stressed gear wheels on basis of computational models]. Uprochnyayushchie tekhnologii i pokrytiya [Hardening technologies and coatings], 2018, no. 8, pp. 353–358.
  8. Rudenko S.P., Valko A.L., Shipko A.A. Povyshenie ekspluatatsionnykh kharakteristik zubchatykh koles karernykh samosvalov posredstvom optimizatsii rezhimov khimikotermicheskoy obrabotki [Increase of operational characteristics of the dump trucks gear wheels by means of optimization of chemico-thermal treatment regimes]. Lite i metallurgiya [Foundry production and metallurgy], 2013, no. 2, pp. 110–114.
  9. Sagaradze V.S. Povyshenie nadezhnosti tsementuemykh detaley [Improving the reliability of carburized parts]. Moscow, Mashinostroenie Publ., 1975. 216 p.
  10. Shishko A.S., Moiseenko V.I., Sidorenko A.G. Povyshenie resursa krupnogabaritnykh zubchatykh koles s ispolzovaniem novykh staley [Increase of lifetime of large-sized tooth gears using new steels]. Sbornik nauchnykh statey “Aktualnye voprosy mashinovedeniya” [Collection of scientific papers “Topical issues of mechanical engineering”], 2017, issue 6, pp. 219–225.
  11. Valko A.L., Rudenko S.P., Mosunov E.I., Mikhlyuk A.I. Metallograficheskiy reaktiv dlya vyyavleniya mikrostruktury tsementovannoy konstruktsionnoy stali [Metallographic reagent for detection of microstructure of cemented structural steel]. Patent RB, no. 15273, 2011.
  12. Rudenko S.P., Valko A.L. Osobennosti rascheta zubchatykh koles transmissiy na glubinnuyu kontaktnuyu vynoslivost [Features of analysis of gear wheels of transmissions on deep back-to-back endurance]. Vestnik mashinostroeniya [Bulletin of mechanical engineering], 2015, no 11, pp. 5–11.
  13. Rudenko S.P., Valko A.L. Osobennosti primeneniya economnolegirovannykh staley dlya krupnomodulnykh zubchatykh koles [Application features sparingly alloyed steels for coarse-grained gear wheels]. Stal [Steel], 2018, no. 8, pp. 54–58.