Title of the article

THE MECHANISM OF DISINTEGRATION OF WIRE IN THE PROCESS OF ACTIVATED FLAME SPRAYING

Authors

Vityaz P.A., Academician of the NAS of Belarus, Doctor of Technical Sciences, Professor, Head of the Staff of the NAS of Belarus, Head of the Department of Mechanical Engineering and Metallurgy, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.

Belotserkovsky M.A., Candidate of Technical Sciences, Associate Professor, Head of the Laboratory of gas-thermal methods of study of hardening of machine components, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus

Suhotsky P.G., Senior Lecturer, Department "Mechanical engineering", Belarusian National Technical University, Minsk, Republic of Belarus

In the section TECHNOLOGICAL MECHANICS
Year 2012 Issue 1 Pages 64-70
Type of article RAR Index UDK 621.793 Index BBK  
Abstract

The theoretical analysis of the interaction of the flame spray of molten wire at the site of metal sprayed is performed. A simplified method for describing the decision to reduce the diameter of the melt at the end of the spray wire has been proposed. The mechanism of separation of drops of molten metal sprayed from a wire upon application of ultrasonic vibrations was considered. It is shown that with increasing intensity ultrasound increases the efficiency of dispersing droplets sprayed wire.

Keywords wire flame spraying, dispersion, theoretical analysis, drops gap, ultrasonic activation
  You can access full text version of the article
Bibliography
  • Belotserkovskiy M.A. Tehnologii aktivirovannogo gazoplamennogo napylenija antifrikcionnyh pokrytij [Technologies of activated flame spraying of anti-friction coatings]. Minsk, Tehnoprint, 2004. 200 p.
  • Fletcher K. Vychislitel'nye metody v dinamike zhidkosti [Computational methods in fluid dynamics]. Moscow, Mir, 1991, part 2. 389 p.
  • Prandtl L., Tit'ens O. Gidro- i ajeromehanika [Hydro and aeromechanics]. Moscow, 1935, vol. 2. 313 p.
  • Anderson D., Tannehill Dzh., Pletcher R. Vychislitel'naja gidrodinamika i teploobmen [Computational fluid dynamics and heat transfer]. Moscow, Mir, 1990, vol. 2. 728 p.
  • Landau L.D., Livshic E.M. Teoreticheskaja fizika [Theoretical physics]. Moscow, Nauka, 1988, vol. VI, Gidrodinamika. 736 p.
  • Belotserkovskiy O.M. Chislennoe modelirovanie v mehanike sploshnyh sred [Numerical modeling in continuum mechanics]. Moscow, Fizmatlit, 1994.
  • Rozhkov A.N. Dinamika i razrushenie kapel' slozhnyh zhidkostej. Diss. dokt. fiz.-mat. nauk [Dynamics and destruction of drops of difficult liquids. Diss. doct. phys.-math. Sci.]. Moscow, 2004. 335 p.
  • Potter V. Vychislitel'nye metody fiziki [Computational methods of physics]. Moscow, Mir, 1975. 392 p.
  • Vityaz P.A., Belotserkovskiy M.A., Polupan Ju.V., Suhockij P.G. Sposob gazoplamennogo napylenija pokrytij iz provolochnyh materialov [Method of flame spraying of wire materials]. Patent RB, no. a 20000511, 2003.
  • Margulis M.A. Osnovy zvukohimii [Basics of sonochemistry]. Moscow, 1984. 236 p.
  • Hmelev V.N., Shalunov A.V. Ul'trazvukovoe raspylenie zhidkostej [Ultrasonic atomization of liquids]. Barnaul, AltGTU, 2010. 281 p.

Title of the article

MULTILEVEL SYSTEM PHYSICOCHEMICAL, MULTIFRACTAL AND WAVELET ANALYSIS OF THE NANOMATERIALS

Authors

Vityaz P.A., Academician of the NAS of Belarus, Doctor of Technical Sciences, Professor, Head of the Staff of the NAS of Belarus, Head of the Department of Mechanical Engineering and Metallurgy, Joint Institute of Mechanical Engineering of the NAS of Belarus, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.

Ilyuschenko A.F., Corresponding Member of the NAS of Belarus, Doctor of Technical Sciences, Professor, General Director of SSPA Powder Metallurgy of NAS of Belarus, Minsk, Republic of Belarus

Kheifetz M.L., Doctor of Technical Sciences, Professor, Deputy Academician-Secretary of the Department of Physics and Technical Sciences of the NAS of Belarus, Scientific Director of the Laboratory of Technological Complexes SSPA "Center" of the NAS of Belarus, Minsk, Republic of Belarus

Solntsev K.A., Academician of the RAS, Doctor of Chemistry, Professor, Deputy President of the RAS - Managing Director of the RAS, Director of the Institute of Metallurgy and Materials Science n.a. A.A. Baikov RAS, Moscow, Russia

Barinov S.M., Corresponding Member of the NAS of Belarus, Doctor of Technical Sciences, Deputy Director for Research, Institute of Metallurgy and Materials Science n.a. A.A. Baikov of the RAS, Minsk, Republic of Belarus

Kolmakov A.G., Doctor of Technical Sciences, Professor, Deputy Director for Scientific Work of the Institute of Metallurgy and Materials Science n.a. A.A. Baikov RAS, Moscow, Russia

In the section NANOMECHANICS
Year 2012 Issue 1 Pages 53-63
Type of article RAR Index UDK 621.9:536.75 Index BBK  
Abstract

The state diagrams elements analysis of the physicochemical system states according to the suggested topological model enabled to define the self-organization principles at pattern and phase formation. The topological model elements have been studied on the ground of the undissociated compound stages being isolated from the dissociated ones with a singular point formed on the state diagram. The rational stage sequence of structures, phases and layers interfacing has been viewed from the structure and energy positions: fractal surface structure growth; an increased number of fractal base elements; fractal meander complication; layer percolation in the interfacial area; fractal degeneration. A multifractal approach to the different structures quantification has been recommended which was realized through the measure of set approximating the structure under study. Wavelet analysis has been suggested to describe the nanostructures of the materials with the features and parameters of the wavelet analysis influencing the material description being defined.

Keywords

nanostructured materials, clusters, fractals, nonequilibrium thermodynamics, wavelet analysis

  You can access full text version of the article
Bibliography
  • Blatter K. Vejvlet-analiz. Osnovy teorii [Wavelet analysis. Fundamentals of the theory]. Moscow, 2004. 280 p.
  • Levkovich-Masljuk L., Pereberin A. Vvedenie v vejvlet-analiz [Introduction to Wavelet Analysis]. Moscow, GrafiKon’99, 1999. 280 p.
  • Kolmakov A.G., Zverev A.A. Primenenie sovremennyh matematicheskih metodov dlja sistemnogo opisanija struktur materialov [Application of modern mathematical methods for systematic description of materials structures]. Sb. nauch. tr. Institutu metallurgii i materialovedenija im. A.A. Bajkova RAN - 70 let: [Coll. of sci. papers. Institute of Metallurgy and Materials Science. A.A. Baykova RAS - 70 years]. Moscow, Interkontakt Nauka, 2008, pp. 660-675.
  • Vasilev A.S. [et al.]. Tehnologicheskie osnovy upravlenija kachestvom mashin: biblioteka tehnologa [Technological bases of quality management of machines: technology library]. Moscow, Mashinostroenie, 2003. 256 p.
  • Kheifec M.L. Proektirovanie processov kombinirovannoj obrabotki: biblioteka tehnologa [Design of combined treatment process: technology library]. Moscow, Mashinostroenie, 2005. 272 p.
  • Kheifec M.L. Formirovanie svojstv materialov pri poslojnom sinteze detalej [Formation of the materials properties of at the layered parts synthesis]. Novopolock, PGU, 2001. 156 p.
  • Gordienko A.I. [et al.]. Sinergeticheskie aspekty fiziko-himicheskih metodov obrabotki [Synergistic aspects of physical and chemical methods of treatment]. Minsk, FTI NANB, 2000. 172 p.
  • Akulovich L.M., Ivashko V.S., Kheifec M.L. Samoorganizacija processov uprochnjajushhej obrabotki [Self-organization of the processes of hardening treatment]. Minsk: Narodnaja kniga, 2008. 236 p.
  • Arzamazcev B.N. [et al.]. Nauchnye osnovy materialovedenija [Scientific bases of materials science]. Moscow, MGTU im. N.Je. Baumana, 1994. 366 p.
  • Anosov V.Ja., Ozerova M.I., Fialkov Ju.Ja. Osnovy fiziko-himicheskogo analiza [Fundamentals of physical and chemical analysis]. Moscow, Nauka, 1976. 504 p.
  • Kurnakov N.S. Vvedenie v fiziko-himicheskij analiz [Introduction to physical and chemical analysis]. M.L., AN SSSR, 1940. 562 p.
  • Gibbs Dzh.V. Termodinamicheskie raboty [Thermodynamic works]. M.-L.: Gostehteorizdat, 1950. 492 p.
  • Glensdorf P., Prigozhin I. Termodinamicheskaja teorija struktury, ustojchivosti i fluktuacii [Thermodynamic theory of structure, stability and fluctuations]. M., Mir, 1973. 280 p.
  • Pontrjagin L.S. Osnovy kombinatornoj topologii [Basics of combinatorial topology]. Moscow, Nauka, 1986. 118 p.
  • Berzhe P., Pomo I., Vidal K. Porjadok v haose: O deterministicheskom podhode k turbulentnosti [Order in chaos: about the deterministic approach to turbulence]. Moscow, Mir, 1991. 368 p.
  • Ivanova V.S. [et al.]. Sinergetika i fraktaly v materialovedenii [Synergy and fractals in material science]. Moscow, Nauka, 1994. 383 p.
  • Vstovskij G.V. Jelementy informacionnoj fiziki [Elements of information physics]. Moscow, MGIU, 2002. 260 p.
  • Vstovskij G.V., Kolmakov A.G., Bunin I.Zh. Vvedenie v mul'tifraktal'nuju parametrizaciju struktur materialov [Introduction to the multifractal parameterization of material structures]. Izhevsk, Reguljarnaja i haoticheskaja dinamika, 2001. 116 p.
  • Mandelbrot B.B. The fractal geometry of nature. New York, Freeman, 1983.
  • Feder J. Fractals, Plenum. New York, 1988.
  • Shreder M. Fraktaly, haos, stepennye zakony. Miniatjury iz beskonechnogo raja [Fractals, chaos, power laws. Miniatures from endless paradise]. Izhevsk, Reguljarnaja i haoticheskaja dinamika, 2001. 528 p.
  • Morozov A.D. Vvedenie v teoriju fraktalov [Introduction to the fractals theory]. Nizhnij Novgorod, Nizhegorodskij universitet, 1999. 140 p.
  • Kulak M.I. Fraktal'naja mehanika materialov [Fractal mechanics of materials]. Minsk, Belarus. navuka, 2002. 280 p.
  • Chelidze T.L. Metody protekanija v mehanike geomaterialov [Methods of flow in mechanics of geomaterials]. Moscow, Nauka, 1987. 276 p.
  • Vinogradov A.Yu., Agnew S.R. Nanocrystalline Materials: Fatigue. Encyclopedia of Nanotechnology. N.Y., Marcel Dekker, 2004, pp. 2269-2288.

Title of the article

STABILITY OF RIDGE CYLINDRICAL SHELLS UNDER ACTION OF EXTERNAL PRESSURE AND AXIAL COMPRESSION

Authors

Latifov F.S., Doctor of Physical and Mathematical Sciences, Professor, Architecture and Construction University, Baku, Azerbaijan, This email address is being protected from spambots. You need JavaScript enabled to view it.

Iskenderov R.A., Candidate of Physical and Mathematical Sciences, Associate Professor, Lecturer of the Architecture and Construction University, Baku, Azerbaijan

Jafarova I.M., Dissertator, Institute of Mathematics and Mechanics of the National Academy of Sciences of Azerbaijan

In the section MECHANICS OF DEFORMED SOLIDS
Year 2012 Issue 1 Pages 43-46
Type of article RAR Index UDK 539.3 Index BBK  
Abstract

The paper is devoted to the investigation of stability of elastic medium-filled cylindrical shells strengthened with longitudinal and lateral ribs under uniform pressure and longitudinal compression. Assuming the shell as structurally-orthotropic, the formulas far critical stresses parameter are abfound with using the asymptotic method. The influence of the environment parameters on the critical stresses is analyzed.

Keywords

ridge shell, elastic medium, stability, critical stresses, structurally-orthotropic shell

  You can access full text version of the article
Bibliography
  • Amiro I.Ja., Zaruckij V.A. Teorijarebristyhobolochek. Metody rascheta obolochek [Theory of ribbed shells. Methods of shells calculating]. Kiev, Nauk. dumka, 1980. 367 p.
  • Iskenderov R.A. Issledovanija vlijanija nachal'nogo progiba rebristoj obolochki, zapolnennoj sredoj, na kriticheskie naprjazhenija obshhej poteri ustojchivosti [Investigation of initial deflection filled ribbed shell on critical stresses of general stability loss]. Mehanika mashin, mehanizmov i materialov [Mechanics of machines, mechanisms and materials], 2008, no. 4(5), pp. 56-57.
  • Iskenderov R.A. Ustojchivost' podkreplennoj perekrestnoj sistemoj reber cilindricheskoj obolochki s zapolnitelem pri dejstvii razlichnyh nagruzok, izmenjajushhihsja vo vremeni [Stability of a filled cylindrical shell strengthened by a cross system of ribs under action of different loads alternative in time]. Mehanika mashin, mehanizmov i materialov [Mechanics of machines, mechanisms and materials], 2009, no. 4(9), pp. 65-68.
  • Iskenderov R.A. Ustojchivost', podkreplennoj perekrestnoj sistemoj reber, cilindricheskoj obolochki s zapolnitelem pri dejstvii razlichnyh nagruzok, izmenjajushhihsja vo vremeni s primeneniem dinamicheskoj modeli Pasternaka [Sustainability of, supported by a system of cross-ribs, a cylindrical shell with a filler under the influence of various loads varying in time with the use of the Pasternak dynamic model]. Dokl. NAN Azerbajdzhana [Azerbaijan National academy of sciences report], 2009, vol. LXV, no. 3, pp. 21-29.
  • Iskenderov R.A. Ustojchivost' podkreplennoj kol'cevymi rebrami cilindricheskoj obolochki s zapolnitelem pri dejstvii razlichnyh nagruzok izmenjajushhihsja vo vremeni [Sustainability of, supported by a system of cross-ribs, a cylindrical shell with a filler under the influence of various loads varying in time]. Sistemnye tehnologii [System technology], 2009, no. 2(61), pp. 198-204.
  • Ilgamov M.A., Ivanov V.A., Gulin B.V. Raschet obolochek s uprugim zapolnitelem [Calculation of shells with elastic filler]. Moscow, Nauka, 1987. 260 p.
  • Latifov F.S. Kolebanija obolochki s uprugoj i zhidkoj sredoj [Fluctuations of the shell with elastic and liquid media]. Baku, Jelm, 1999. 164 p.

Title of the article

THE STRESS-STRAIN STATE IN NEAR CRACK TOP FOR NONHOLONOMIC PLASTICITY UNDER CONDITIONS OF PLANE STRESS

Authors

Nifagin V.A., Candidate of Physical and Mathematical Sciences, Head of the Department “Engineering Mathematics”, Belarusian National Technical University, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.">This email address is being protected from spambots. You need JavaScript enabled to view it.
Hundzina M.A., Teaching Assistant of the Department “Engineering Mathematics”, Belarusian National Technical University, Minsk, Republic of Belarus

In the section MECHANICS OF DEFORMED SOLIDS
Year 2012 Issue 1 Pages 47-52
Type of article RAR Index UDK 539.375 Index BBK  
Abstract

The stress-strain state of elastic-plastic material in a neighborhood of the top of arbitrary oriented straight-line crack with determening relations of the flow theory with hardening under plane stress is investigated. Based on the variant of a method of asymptotic expansion taking into account nonholonomicity of the resolving equations and the singularity of fields of stresses and deformations, the problem is reduced to a recurrent sequence of two-point boundary problems, that are solved numerically-analytically. The analysis of stresses and deformations and local characteristics of damage in the area surrounding singular point has been done.

Keywords

elastic-plastic body, crack of general form, stress-strain state, method of asymptotic expansions

  You can access full text version of the article
Bibliography
  • Kachanov L.M. Osnovy mehaniki razrushenija [Fundamentals of fracture mechanics]. Moscow, Nauka, 1974. 312 p.
  • Ivlev D.D., Ershov L.V. Metod vozmushhenij v teorii uprugoplasticheskogo tela [Perturbation method in the elastic-plastic body theory]. Moscow, Nauka, 1978. 208 p.
  • Stepanova L.V. Matematicheskie metody mehaniki razrushenija [Mathematical methods of fracture mechanics]. Moscow, Fizmatlit, 2009. 334 p.
  • Rahman M., Hancock J.W. Elastic perfectly-plastic asymptotic mixed mode crack tip fields in plane stress. Int. J. Solids and Structures, 2006, vol. 43, pp. 3692-3704.
  • Libovic G. Razrushenie [Destruction]. Moscow, Mir, 1975, vol. 2. 768 p.
  • Yuan F.G., Yang S. Analytical solutions of fully plastic crack-tip higher order fields under antiplane shear. Intern. J. of Fracture, 1995, vol. 69, pp. 1-26.
  • Nifagin V.A. Ocenka naprjazhennogo sostojanija uprugoplasticheskogo tela v okrestnosti uglovoj tochki [Evaluation of the stress state of elastic-plastic body in corner]. Vest. BGU. Ser. 1, Fizika. Matematika. Informatika [Journal of the BSU. Seria 1, Physics. Mathematics. Informatics.], 2010, no. 3, pp. 102-106.

Title of the article

THE STRENGTH CRITERION FOR THE TENSION ESTIMATION OF HIGH-PRESSURE APPARATUS DIES

Authors

Dudyak A.I., Doctor of Technical Sciences, Professor, Belarusian National Technical University, Minsk, Republic of Belarus, This email address is being protected from spambots. You need JavaScript enabled to view it.
Khvasko V.M., Postgraduate Student, Belarusian National Technical University, Minsk, Republic of Belarus

In the section MECHANICS OF DEFORMED SOLIDS
Year 2012 Issue 1 Pages 39-42
Type of article RAR Index UDK 62-987 Index BBK  
Abstract

During the diamond dust synthesis the most stressed parts of a high-pressure apparatus are dies. They are subjects to all-around nonuniform compression. The criterion for strength estimation of such elements is required with the next conditions: the high-alloy material properties should be considered, the geometrical interpretation of the criterion should be a continuous function in the all range of definition. In this article the criterion that suits the necessary conditions was proposed. It is a linear function of the stress tensor component. Thus it can be used for the estimation of safety factor on yielding and destruction. The efficiency of the proposed criterion using for the strength calculation of a high-pressure apparatus dies was proved by comparison with the known strength criteria.

Keywords

high-pressure apparatus, strength criterion, equivalent stress, tensile strength, stress octahedral

  You can access full text version of the article
Bibliography
  • Lebedev A.A. Raschety na prochnost' pri slozhnom naprjazhennom sostojanii (teorii prochnosti) [Calculations of strength under complex stress state (theory of strength)]. Kiev, 1968. 67 p.
  • Ponomarev S.D. [et al.]. Raschety na prochnost' v mashinostroenii: v 3 t. [Calculations of strength in mechanical engineering: in 3 volumes]. Moscow, MAShGIZ, vol. 1, 1956. 884 p.
  • Prohorova A.N. Utochnennyj raschet odnorodnyh podshipnikov. Diss. kand. tehn. nauk [Improved calculation of similar bearings. Cand. techn. sci. diss.]. Minsk, 1964. 16 p.
  • Dudjak A.I. Teoreticheskie osnovy konstruirovanija pressform vysokogo davlenija i tehnologija poluchenija poroshkov kubicheskogo nitrida bora. Diss. dokt. tehn. nauk [Theoretical foundations of mold design and the high-pressure technology for producing cubic boron nitride powders. Diss. doct. techn. sci.]. Minsk, 1992. 367 p.
  • Bridzhmen P.V. Issledovanie bol'shih plasticheskih deformacij i razryva [Study of large plastic deformation and fracture]. Moscow, 1955. 444 p.